پیش بینی جریان رودخانه ها نقش بسزایی در برنامه ریزی، مدیریت و بهره برداری از منابع آب دارد . هدف اصلی این تحقیق بررسی امکان پیش آگاهی و پیش بینی دبی رودخانه های کارون شمالی (رودخانه ارمند و بازفت) با استفاده از روش های نوین شبیه سازی می باشد . در این مطالعه نوسانات جریان رودخانه های ارمند و بازفت در ارتباط با سیگنالهای بزرگ مقیاس اقلیمی بررسی شده است. بدین منظور از داده های ماهانه شاخص نوسان جنوبی (SOI )، نوسان اطلس شمالی (NAO) و پدیده ENSO در مناطق NINO4،NINO3 ، NINO3.4 و NINO1+2 استفاده گردید. تمامی داده های مربوط به سیگنال های اقلیمی از مرکز داده های آنالیز شده NCEP دریافت شد. داده های مربوط به دبی روزانه ایستگاه های هیدرومتری ارمند و مرغک نیز از مرکز داده های وزارت نیرو تهیه گردید. در این مطالعه به منظور طراحی بهینه معماری شبکه عصبی مصنوعی جهت پیش بینی دبی رودخانه ها براساس سیگنال های اقلیمی از الگوریتم ژنتیک بهره گرفته شد. نتایج تحقیق نشان داد که سیگنال های ENSO در ناحیه NINO1+2 و NINO3 به عنوان موثرترین سیگنال بر تغییرات جریان رودخانه های ارمند و بازفت هستند و برای پیش آگاهی از وضعیت دبی رودخانه های کارون شمالی می توان از سیگنال های فوق استفاده کرد.