فریبا صلاحی

فریبا صلاحی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۳ مورد از کل ۳ مورد.
۱.

تقییم أداء المعلمین فی المدارس الذکیه (الإلکترونیه) علی ضوء نظام الاستنتاج الضبابی(مقاله علمی وزارت علوم)

تعداد بازدید : ۳۵۵ تعداد دانلود : ۱۵۸
إنّ تقییم أداء المعلمین باعتباره أحد ضروریات التعلیم الهامه یؤدی دورا هاما فی تحسین جوده التعلیم وتطویر المدارس الذکیه. وفی المقابل فإن فقدان نظام مناسب وعلمی للتقییم، لا یؤدی إلی تقاعس المعلمین الملتزمین فحسب بل إن له تبعات أخری أیضا مثل: تراجع الالتزام الوظیفی وترک المهنه المؤسساتیه. انطلاقا من هذا الأمر قامت الدراسه الحالیه بهدف تقدین نظام استنتاج ضبابی ( FIS )، لتألیف وإعداد نموذج لتقییم أداء المعلمین العاملین فی المدارس الذکیه بمدینه "اردکان". فی هذا الإطار وبعد مراجعه خلفیه البحث وتحدید المؤشرات المؤثره علی تقییم أداء قسمی الوعی الإلکترونی والأداء الصفی استفدنا من طریقه دلفی للحصول علی موافقه الخبراء علی المؤشرات النهائیه للنموذج المقدم. تتکون عینه البحث من 20 شخصا من الخبراء فی مجال التربیه والتعلیم. إن الغموض والتعقید الموجود فی مؤشرات تقییم الأداء لاسیما المؤشرات الکیفیه، وکذلک الاستفاده من المتغیرات الکلامیه من أجل الحصول علی موافقه الخبراء، أدی إلی اللجوء إلی نظام الاستنتاج الضبابی، کما تم تحلیل مؤلفات النموذج عبر برنامج ماتلاب. فیما یتعلق بالمدارس المعنیه فإن مخرجات النظام الضبابی أظهرت أن مستوی وضع معلمی المدارس الذکیه کان "متوسطا" فی مؤشرات المراحل الأساسیه وإنتاج المحتوی، وفی مؤشرات الإنترنت وبرامج التقویه الدراسیه وتنمیه محتوی التعلیم والتقییم الإلکترونی فی مستوی عال نسبیا. بناء علی هذه النتائج فإن أداء معلمی المدارس الذکیه قدر بالمتوسط، وفی نهایه البحث تمّ تقدیم بعض المقترحات والتوصیات لتحسین الوضع الراهن فی المدارس الذکیه.
۲.

رویکرد چندهدفه مبتنی بر روش های فرا ابتکاری برای مسئله انتخاب زیرمجموعه ویژگی ها(مقاله علمی وزارت علوم)

کلید واژه ها: برنامه ریزی چندهدفه انتخاب زیرمجموعه ویژگی ها الگوریتم های فرا ابتکاری الگوریتم ژنتیک الگوریتم NSGA II

حوزه های تخصصی:
تعداد بازدید : ۲۷۵ تعداد دانلود : ۱۶۷
هدف: پیدا کردن زیرمجموعه ای از مجموعه ویژگی ها، مسئله ای است که در زمینه های مختلفی مانند یادگیری ماشین و شناسایی آماری الگوها، کاربرد گسترده ای دارد. با توجه به اینکه افزایش تعداد ویژگی ها، هزینه محاسباتی سیستم را به طور تصاعدی افزایش می دهد، این پژوهش به دنبال طراحی و پیاده سازی سیستم هایی با کمترین تعداد ویژگی و کارایی قابل قبول است. روش: با توجه به لزوم جست وجوی کارآمد در فضای جواب، در این پژوهش برای انتخاب ویژگی در داده های چندکلاسه، از الگوریتم ژنتیک (GA) و الگوریتم ژنتیک با مرتب سازی نامغلوب (NSGA II) چندهدفه با هدف افزایش دقت طبقه بندی و کاهش تعداد ویژگی ها استفاده شده است. روش ارائه شده، بر مبنای دو روش طبقه بندی ماشین بردار پشتیبان (SVM) و K نزدیک ترین همسایه (KNN) روی 6 مجموعه داده اعتباری به اجرا درآمد و نتایج آن تجزیه و تحلیل شد. یافته ها: الگوریتم ژنتیک و الگوریتم ژنتیک با مرتب سازی نامغلوب چندهدفه برای افزایش دقت طبقه بندی و کاهش تعداد ویژگی ها در مسئله انتخاب ویژگی در داده های چندکلاسه کارکرد مناسبی دارند. نتایج به دست آمده، نشان دهنده بهبود در دقت طبقه بندی، هم زمان با کاهش چشمگیر در تعداد ویژگی ها در هر دو روش ماشین بردار پشتیبان و نزدیک ترین همسایه است. نتیجه گیری: با توجه به نتایج، رویکرد پیشنهادشده در این پژوهش برای مسئله انتخاب ویژگی ها کارایی بسیار خوبی دارد.
۳.

ارائه مدل یکپارچه برنامه ریزی تولید و زمان بندی نگهداری و تعمیرات پیشگیرانه با در نظر گرفتن عدم قطعیت پارامترها و اختلال در تسهیلات(مقاله علمی وزارت علوم)

کلید واژه ها: نگهداری و تعمیرات پیشگیرانه زمان بندی اختلال NSGA-II MOPSO

حوزه های تخصصی:
تعداد بازدید : ۱۴۹ تعداد دانلود : ۱۲۷
مسئله زمان بندی ماشین های موازی و نگهداری و تعمیرات پیشگیرانه این دسته از ماشین ها ازجمله مسائل کلیدی در حوزه فرآیندهای تولیدی است که همواره موردتوجه پژوهشگران بوده است. این پژوهش به دنبال طراحی مدل یکپارچه ای برای زمان بندی تولید و برنامه ریزی نگهداری و تعمیرات ماشین های موازی با در نظر گرفتن احتمال اختلال در عملکرد تسهیلات و عدم قطعیت در پارامترهای مسئله است. در این راستا یک مدل برنامه ریزی ریاضی با دو هدف حداقل سازی زمان تکمیل وزنی محصولات و حداکثرسازی قابلیت اطمینان در خط تولید ارائه شده است. با توجه به ماهیت NP-hard مسئله موردبررسی از جنبه محاسباتی، از الگوریتم های حل فراابتکاری NSGA-II و MOPSO به منظور حل مسائل عددی در ابعاد متوسط و بزرگ استفاده شده است. بر این اساس، مسائل عددی در ابعاد مختلف طراحی شده و از الگوریتم های موردنظر به منظور حل این مسائل استفاده شد. نتایج نشان می دهند که الگوریتم NSGA-II در مقایسه با الگوریتم MOPSO جواب های مناسب تری را ارائه می کند. هرچند الگوریتم MOPSO نسبت به الگوریتم NSGA-II از نظر زمان حل مسئله از کارایی بیشتری برخوردار است، مقدار این برتری قابل ملاحظه نیست و نمی توان آن به عنوان مبنای قطعی مقایسه دو الگوریتم در نظر گرفت.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان