عملکرد دو روش ARIMA و شبکه عصبی GMDH در پیش بینی تقاضای گاز طبیعی در بخش های مختلف (ایران-1380-1389)(مقاله علمی وزارت علوم)
منبع:
مطالعات اقتصادی کاربردی ایران سال ۳ زمستان ۱۳۹۳ شماره ۱۲
33 - 58
حوزه های تخصصی:
باتوجه به افزایش روزافزون مصرف گاز طبیعی، برنامه ریزی در بخش گاز طبیعی و بررسی و پیش بینی تقاضای گاز طبیعی جهت دستیابی به امنیت عرضه انرژی گاز طبیعی و به دنبال آن توسعه پایداراهمیت فراوانی دارد. از این رو در این تحقیق تقاضای گاز طبیعی در بخش های خانگی-تجاری، صنعت و نیروگاه که جزء مصرف کنندگان عمده گاز طبیعی هستند مورد بررسی قرار گرفته و از دو روش ARIMA (Autoregressive Integrated Moving Average) و شبکه عصبی GMDH (Group Method of Data Handling) برای پیش بینی تقاضای گاز طبیعی و از معیارهای MSE (Mean Squared Error)، RMSE (Root Mean Squared Error)، درصد خطای پیش بینی و دقت پیش بینی جهت مقایسه دو روش استفاده شده است. با توجه به نتایج، دقت پیش بینی به ترتیب در سه بخش خانگی - تجاری ، صنعتی و نیروگاه در روش ARIMA 8/93، 3/98 و 87 درصد و در روش شبکه عصبی GMDH 4/96، 99 و 2/98 درصد بدست آمده است و معیارهای RMSE و MSE در هر سه بخش برای روش شبکه عصبی GMDH کوچکتر از روش ARIMA بوده است. از این رو می توان نتیجه گرفت که با توجه به مدلسازی صورت گرفته، روش شبکه عصبی GMDH عملکرد و دقت بالاتری نسبت به روش ARIMA در پیش بینی تقاضای گاز طبیعی دارد.