مطالب مرتبط با کلیدواژه
۱.
۲.
۳.
۴.
۵.
Technical Analysis
حوزههای تخصصی:
Market participants use different tools basically technical or fundamental analysis to have a higher return in constructing a well-maintained portfolio. Examining the efficiency of technical strategies in creating a portfolio is the main objective of this study. Technical analysis is based on using historical trading data to launch selling and buying rules that maximize return and still control risks of loss. We use the adjusted trading data of 50 active stocks in the Tehran Stock Exchange as our sample which includes daily trading data from 2008 to 2019. We construct two types of portfolio; strategy-based portfolio versus random one. Then we calculate abnormal returns of each type of portfolio, applying the Monte-Carlo technique. Using Independent-Samples T-Test to compare means of the abnormal returns, our findings show that there is a significant positive abnormal return for both strategies applied in constructing a portfolio (0.057 and 0.062 mean difference for the first and second strategy, respectively), confirming the higher efficiency of applying technical strategies in portfolio management. Therefore, it is suggested to have and apply a strategy or combination of strategies for trading as an active participant, instead of constructing, rebalancing and maintaining one’s portfolio only by chance, since there will be undesirable results in the long-run.
Performance Evaluation of the Technical Analysis Indicators in Comparison with the Buy and Hold Strategy in Tehran Stock Exchange Indices(مقاله علمی وزارت علوم)
حوزههای تخصصی:
Technical analysis is one of the financial market analysis tools. Technical analysis is a method of anticipating prices and markets through studying historical market data. Based on the factors studied in this type of analysis, indicators are designed and presented to facilitate decision-making on buy and sell stress and then buy and sell action in financial markets. This research evaluates performances and returns of 10 conventional technical analysis indicators based on the strategies set on the total stock exchange index, the total index of OTC market and 8 other (non-correlated) industry indices by using Meta Trader software from 2008 to 2018. Also, the significance of the difference between the returns of the indicators is tested using the buy and hold strategy. The results show a significant difference between the returns using some of the technical analysis indicators in some indices and buy and hold strategy. The effectiveness of technical analysis strategies varies across industries and EMA and SMA with respectively 6 and 5 repetitions, are the best strategies and BB with just one repetition has the least repetition. The investment industry index with the most repetition is the industry in which the strategies used in this study have been able to provide an acceptable return.
A Hybrid Artificial Intelligence Approach to Portfolio Management(مقاله علمی وزارت علوم)
حوزههای تخصصی:
The tremendous advances in artificial intelligence over the past decade have led to their increasing use in financial markets. In recent years a large number of investment companies and hedge funds have been implementing algorithmic and automated trading on their trading. The speed of decision-making and execution is the most important factor in the success of institutional and individual investors in capital markets. Algorithmic trading using machine learning methods has been able to improve the performance of investors by finding investment opportunities as well as time entry and exit of trading. The purpose of this study is to achieve a better portfolio performance by designing an intelligent and fully automated trading system that investors with the support of this system, in addition to finding the best opportunities in the market, can allocate resources optimally. The present study consists of four separate steps. Respectively, tuning the parameters of technical indicators, detecting the current market regime (trending or non-trending), issuing a definite signal (buy, sell or hold) from the indicators’ signals and finally portfolio rebalancing. These 4 steps respectively are performed using genetic algorithm, fuzzy logic, artificial neural network and conventional portfolio optimization model. The results show the complete superiority of the proposed model in achieving higher returns and less risk compared to the performance of the TEDPIX and other mutual funds in the same period.
Chaotic Test and Non-Linearity of Abnormal Stock Returns: Selecting an Optimal Chaos Model in Explaining Abnormal Stock Returns around the Release Date of Annual Financial Statements(مقاله علمی وزارت علوم)
حوزههای تخصصی:
For many investors, it is important to predict the future trend of abnormal stock returns. Thus, in this research, the abnormal stock returns of the listed companies in Tehran Stock Exchange were tested since 2008- 2017 using three hypotheses. The first and second hypotheses examined the non-linearity and non-randomness of the abnormal stock returns ′ trend around the release date of annual financial statements, respectively. While, the third hypothesis tested the potential of the chaos model in explaining future abnormal returns based on the past abnormal returns around the release date of the annual financial statements. For this pur-pose, BDS, Teraesvirta Neural Network, and White Neural Network tests were used to investigate its non-linearity. In addition, Lyapunov exponent, correlation dimension, Dickey-Fuller, and Hurst exponent tests were used for testing non-randomness and the fitness of AR, SETAR, and LSTAR models to determine the optimal model in explaining the abnormal returns utilizing R software. Results of these tests represented a non-linear and non-random process and chaos in the abnormal stock returns, implying the predictability of abnormal stock returns. Also, among three used chaos models, the LSTAR model had lower error and more predictability than the other two models.
Use of Genetic Algorithm in Algorithmic Trading to Optimize Technical Analysis in the International Stock Market (Forex)
منبع:
Cyberspace Studies,Volume ۶, Issue ۱, January ۲۰۲۲
21 - 29
حوزههای تخصصی:
Recent studies on financial markets have demonstrated that technical analysis can help us effectively predict the stock market index trend. Business systems are widely used for stock market analysis. This paper uses a genetic algorithm (GA) to develop a stock market trading optimization system. Our proposed system can generate a decision-making strategy for buying, holding, and selling stocks for each day and generate high returns for each stock. The system consists of two stages: removing restricted stocks and producing a stock trading strategy. Accordingly, evolutionary computation, like GA, is highly promising because of its intelligence, flexibility, and search strength (fast and efficient). The multiple-objective nature of the utilized algorithm can be regarded as the center of gravity of the research question. The proper functioning or malfunctioning of the resulting portfolio management can be employed as a benchmark for selecting or discarding the algorithm. On the other hand, the research question is focused on the application of technical analysis indicators. Therefore, both aspects of the research question, namely the multiple-objective nature of the algorithm in terms of the analysis method and technical indicators in terms of features selected for analysis, must be taken into account.