سید رضا غفاری رزین

سید رضا غفاری رزین

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۴ مورد از کل ۴ مورد.
۱.

افزایش دقت پهنه بندی تابش خورشیدی با تلفیق داده ها در روش کوکریجینگ(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تابش خورشیدی سیستم اطلاعات مکانی (GIS) درون یابی مکانی کوکریجینگ ابزار Solar Radiation

حوزه‌های تخصصی:
تعداد بازدید : ۲۳۴ تعداد دانلود : ۱۲۰
محاسبه دقیق مقدار تابش خورشیدی در یک گستره مکانی، نقش مؤثری در اقلیم شناسی و کشاورزی منطقه، برآورد میزان تبخیر و تعرق، مکان یابی نیروگاه خورشیدی و به کارگیری سیستم های فتوولتائیک دارد. دقیق ترین روش برآورد تابش خورشیدی برداشت نقطه ای در ایستگاه های زمینی با استفاده از دستگاه های آفتاب نگار است که در آن اندازه گیری ها با استفاده از روش های درون یابی به یک سطح پیوسته تعمیم داده می شوند. هدف اصلی این تحقیق افزایش دقت پهنه بندی تابش خورشیدی در گستره کشور ایران در قالب روش کوکریجینگ است. بدین منظور ابتدا میزان تابش خورشیدی با استفاده از مدل ارتفاع رقومی (DEM) و ابزار مکانیSolar Radiation  در نرم افزار ArcGIS محاسبه شد. در ادامه ضریب همبستگی (R) بین مقادیر به دست آمده از نرم افزار با مقادیر تابش خورشیدی اندازه گیری شده در ایستگاه های زمینی محاسبه شد. با توجه به 713/0R= بین این دو داده، با روش کوکریجینگ داده ها با هم تلفیق شده و سطح پیوسته تابش خورشیدی برای کل کشور محاسبه شد. نتایج نشان داد که محاسبه تابش خورشیدی با استفاده از ابزار Area Solar GIS در مقایسه با داده های زمینی دقت کافی ندارند؛ ولی تلفیق این دو داده ضمن تأثیردادن توپوگرافی در محاسبه تابش خورشیدی، موجب افزایش دقت درون یابی به اندازه 11 درصد می شود؛ ازاین رو ممکن است مدل های موجود برای برآورد تابش خورشیدی در مقایسه با داده های زمینی در مقیاس کشوری دقت کافی را نداشته باشند، اما می توان از آن ها برای بهبود دقت درون یابی داده های زمینی استفاده کرد. براساس نقشه نهایی اکثر مناطق کشور به غیر از مناطق شمالی و شمال غربی بالاتر از متوسط جهانی (w/m 2 340) تابش خورشیدی دریافت می کنند
۲.

ارزیابی کارائی مدل شبکه عصبی حافظه کوتاه مدت طولانی در پیش بینی سری زمانی یونوسفر و مقایسه آن با مدل های GRNN، GIM و NeQuick(مقاله علمی وزارت علوم)

کلیدواژه‌ها: یونوسفر TEC NeQuick LSTM GIM

حوزه‌های تخصصی:
تعداد بازدید : ۱۳۸ تعداد دانلود : ۱۳۴
در این مقاله ایده استفاده از مدل شبکه عصبی حافظه کوتاه مدت طولانی (LSTM) به منظور مدل سازی و پیش بینی سری زمانی یونوسفر در دوره فعالیت های شدید خورشیدی به عنوان یک روش جدید ارائه شده است. با استفاده از مدل جدید مقدار محتوای الکترون کلی (TEC) مدل سازی شده و سپس تغییرات زمانی آن در دوره فعالیت های شدید خورشیدی و ژئومغناطیسی (سال 2017) پیش بینی می شود. برای بررسی کارائی روش مورد اشاره، از مشاهدات ایستگاه GPS تهران (N35/69 ، E51/33) که یکی از ایستگاه های شبکه جهانی IGS می باشد، استفاده شده است. مشاهدات سال های 2007 الی 2016 برای آموزش مدل مورد نظر به کار گرفته شده و سپس با مدل آموزش دیده، سری زمانی TEC در سال 2017 پیش بینی می شوند. نتایج حاصل از مدل جدید با نتایج حاصل از مدل شبکه عصبی رگرسیون عمومی (GRNN)، مدل تجربی NeQuick و خروجی شبکه جهانی IGS (GIM-TEC) مقایسه شده است. همچنین از شاخص های آماری ضریب همبستگی، خطای نسبی و جذر خطای مربعی میانگین (RMSE) به منظور بررسی دقت و صحت مدل ها استفاده می شود. مقدار RMSE به دست آمده برای مدل های LSTM، GRNN، GIM و NeQuick در مرحله تست سال 2017 به ترتیب برابر با 2/87، 4/51، 4/14 و 6/38 TECU می باشد. آنالیز مؤلفه های مختصاتی ایستگاه تهران با روش تعیین موقعیت نقطه ای دقیق (PPP) نشان می دهد که با استفاده از مدل جدید، بهبودی در حدود 5/19 الی 56/23 میلیمتر در مختصات ایستگاه نسبت به سایر مدل ها دیده می شود. نتایج حاصل از این تحقیق نشان می دهد که دقت و صحت مدل LSTM برای پیش بینی مقدار TEC در دوره فعالیت های شدید خورشیدی و ژئومغناطیسی، در مقایسه با مدل های GRNN، NeQuick و GIM بیشتر است.
۳.

تحلیل بی هنجاری های یونسفری در زمین لرزه ها با استفاده از شاخص میانگین و تبدیل فوریه زمان کوتاه(مقاله علمی وزارت علوم)

کلیدواژه‌ها: یونوسفر TEC تبدیل فوریه زمان کوتاه پیش نشانگری زمین لرزه GPS

حوزه‌های تخصصی:
تعداد بازدید : ۹۴ تعداد دانلود : ۷۰
پدیده زمین لرزه هرساله در جهان و مخصوصاً کشور لرزه خیزی چون ایران، زیان های جانی و مالی هنگفتی به بار می آورد و پیش بینی زمین لرزه به یکی از چالش های بزرگ دانشمندان در دهه های اخیر تبدیل شده است. از جمله این پیش نشانگرها می توان به وقوع بی هنجاری در پارامترهای یونسفری قبل از زمین لرزه اشاره نمود. پارامتر مورد بررسی در این تحقیق محتوای الکترون کلی (TEC) است و مناطق مطالعاتی برای بررسی، زمین لرزه دوگانه اهر- ورزقان با بزرگای 6.5 و زمین لرزه سرپل ذهاب با بزرگای 6.3 است. در زمین لرزه اهر- ورزقان از مشاهدات شش ایستگاه GPS و در زمین لرزه سرپل ذهاب از مشاهدات پنج ایستگاه GPS شبکه جهانی IGS، به منظور محاسبه مقدار محتوای الکترون کلی (TEC) یونسفر استفاده شده است. تبدیل فوریه زمان کوتاه (STFT) و پارامترهای آماری میانگین و انحراف معیار برای کشف بی هنجاری های موجود در سری زمانی یونسفر به کار گرفته شده اند. همچنین تغییرات شاخص های ژئومغناطیسی  و آب و هوایی KP، Dst، F10.7، Vsw (سرعت پلاسما)، Ey (میدان مغناطیسی) و IMFBz (میدان مغناطیسی بین سیاره ای) برای اطلاع از شرایط روزهای قبل از وقوع زمین لرزه مورد بررسی و آنالیز قرار گرفته اند. نتایج نشان می دهد که برای زمین لرزه اهر- ورزقان، بی هنجاری هایی در11، 12، 13 و نیز 5 روز قبل از زمین لرزه وجود دارد. اما برای زمین لرزه سرپل ذهاب، در 6، 7، 13 و 21 روز قبل از زمین لرزه، بی هنجاری هایی قابل مشاهده است. آنالیزهای انجام گرفته در این مقاله نشان می دهد که در صورت بررسی کلیه پارامترهای ژئومغناطیسی و آب و هوائی قبل از وقوع زمین لرزه، می توان با آنالیز سری زمانی یونسفر با روش STFT، بی هنجاری های موجود را به صورت مستقیم مشاهده نمود. توجه به این نکته ضروری است که در روزهایی که شرایط ژئومغاطیسی و آب و هوایی آرامی حاکم نیست، نمی توان تنها وقوع زمین لرزه را علت بی هنجاری های کشف شده در سری زمانی یونسفر، دانست.
۴.

ارزیابی کارائی مدل های یادگیری ماشین در برآورد ارتفاع ژئوئید محلی با اندازه گیری های GPS/Leveling(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ژئوئید مدل ANN مدل ANFIS مدل SVR مدل GRNN ارتفاع اورتومتریک

حوزه‌های تخصصی:
تعداد بازدید : ۱۴ تعداد دانلود : ۱۲
در این مقاله کارائی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی-فازی سازگار (ANFIS)، رگرسیون بردار پشتیبان (SVR) و مدل شبکه عصبی رگرسیون عمومی (GRNN) در تعیین ارتفاع ژئوئید محلی مورد ارزیابی قرار می گیرد. برای انجام اینکار، مختصات ژئودتیکی 26 ایستگاه از شبکه شمال غرب ایران که ارتفاع اورتومتریک (Ho) آنها نیز با ترازیابی درجه یک توسط سازمان نقشه برداری کشور (NCC) اندازه گیری شده، مورد استفاده قرار گرفته است. در این ایستگاه ها، تفاضل ارتفاع اورتومتریک از ارتفاع نرمال (h)، به عنوان ارتفاع ژئوئید (N) در نظر گرفته شده است. بنابراین ورودی مدل های ANN، ANFIS، SVR و GRNN مختصات طول و عرض ژئودتیکی ایستگاه ها بوده و خروجی متناظر با آن، ارتفاع ژئوئید است. آموزش مدل ها با استفاده از 22 و 19 ایستگاه انجام گرفته است. به عبارت دیگر تعداد ایستگاه های آموزش متغیر بوده تا بتوان آنالیز دقیق تری از دقت مدل ها را ارائه نمود. به منظور ارزیابی دقیق تر، نتایج با ژئوئید حاصل از مدل IRG2016 که توسط سازمان نقشه برداری کشور تولید شده، مقایسه می شوند. ارزیابی های انجام گرفته نشان می دهد که در حالت 22 ایستگاه آموزش و 4 ایستگاه آزمون، RMSE مدل های ANN، ANFIS، SVR، GRNN و IRG2016 در مرحله آزمون به ترتیب برابر با 37/32، 19/83، 49/34، 53/82 و 29/65 سانتی متر شده است. اما در حالت 19 ایستگاه آموزش و 7 ایستگاه آزمون، مقادیر خطای مدل ها به ترتیب برابر با 36/63، 58/31، 39/64، 41/29 و 24/68 سانتی متر به دست آمده است. مقایسه RMSE نشان می دهد که مدل ANN با تعداد ایستگاه های آموزش کمتر، دقت بالاتری نسبت به مدل های ANFIS، SVR و GRNN ارائه می دهد. نتایج این مقاله نشان می دهد که با استفاده از مدل های ANN و ANFIS می توان ارتفاع ژئوئید را با دقت بالایی به صورت محلی برآورد کرده و مورد استفاده قرار داد.         

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان