فیلتر های جستجو:
فیلتری انتخاب نشده است.
نمایش ۲۱ تا ۳۹ مورد از کل ۳۹ مورد.
حوزه های تخصصی:
در برخی تفاسیر فلسفی از احتمال، مانند تفسیر کلاسیک، تفسیر منطقی و تفسیر معرفت شناختی، رجوع به مجموعه ای به نام فضای نمونه یا فضای وصفی برای محاسبه احتمال لازم است. در این محاسبات، بر اساس اصل عدم تفاوت، احتمال عناصر اولیه یکسان فرض می شود. اما درباره خود این اصل، که اساس حساب احتمالات در تفاسیر مزبور است، دو مساله اساسی وجود دارد که در مباحث فلسفی احتمال قابل طرح است. اول، اعتبار معرفت شناختی خود این اصل است، و دوم، پارادوکس هایی است که از به کارگیری این اصل ناشی می شوند. اما تاکنون پاسخی در خور به هیچ یک از این دو مساله داده نشده است.
در این مقاله، ابتدا با اشاره به تفاسیر مختلف احتمال، نشان داده می شود که کدام تفاسیر نیازمند این اصل هستند. همچنین اصل عدم تفاوت به طور کلی و نیز در احتمال معرفت شناختی، بر اساس اصل علیت و با ارجاع به علم حضوری توجیه می شود. مهم ترین بخش این مقاله، طرح هشت پارادوکس همراه با پاسخ هایی است که برای حل آنها ارایه شده و با ناتمام دانستن این پاسخ ها، راه حل جدیدی بر اساس تفسیر احتمال معرفت شناختی ارایه می شود.
رده های نامتناهی
حوزه های تخصصی:
شهودی گرایی در ریاضیات(مقاله پژوهشی حوزه)
منبع:
ذهن پاییز ۱۳۸۶ شماره ۳۱
حوزه های تخصصی:
فراروش شناسی حل مناقشه اثبات ریاضیاتی(مقاله علمی وزارت علوم)
حوزه های تخصصی:
گسترش روش های استدلال ریاضی، در دهه های اخیر، منجر به نقد اساسی تعریف کلاسیک اثبات ریاضیاتی شده است. منتقدان، معمولاً، تعریف های بدیلی پیشنهاد کرده اند؛ تعریف های فراوانی که دارای پیش فرض ها و پیامدهای گوناگون و گاهی حتی ناسازگاری هستند. این وضعیت، ریاضیات را در معرض نسبی نگری قرار داده است. از این رو، مسئله فراوانی تعریف های اساساً گوناگون را می توان یکی از مهم ترین مسائل معرفت شناسی ریاضیاتی دانست. این مقاله، تلاش می کند تا از یک موضع مرتبه سوم یا فراروش شناختی به «چیستی فرامعیار انتخاب بهترین تعریف برای اثبات ریاضیاتی» پاسخ دهد و از این طریق، ما را یک گام به تعریف موجه اثبات ریاضیاتی نزدیک تر سازد.
نگارندگان نشان خواهند داد که فرامعیار قدرت تبیینی، در مقایسه با دو رقیب دیگر، یعنی فرامعیارهای هم ارزی، و اجماع قابل دفاع تر است.
جستارهایی در فلسفه ریاضیات و منطق
حوزه های تخصصی:
زمینه ی فرهنگی ریاضیات
حوزه های تخصصی:
فلسفه شهودی ریاضیات (عددمحوری)
حوزه های تخصصی:
فلسفه ی ترفندان ریاضی
حوزه های تخصصی:
الگوریتمى در معرفت و بصیرت ریاضى(مقاله علمی وزارت علوم)
حوزه های تخصصی:
چون مطالعه ریاضیات، دستگاه ذهنى را توسعه مى دهد و به کار مى اندازد، مى توان ادعا کرد که درک عمیق مفاهیم ریاضى مى تواند در حقیقت یابى و درست فهمى پدیده ها مؤثر باشد؛ یعنى درک ریاضى مى تواند کمک کند که فرد، کارهایش را از روى دانایى و بینایى بهترى انجام دهد. به عبارت دیگر فرد مى تواند به توانایى در استنتاج حقایق با استفاده از مفاهیم ریاضى نایل شود. در این مقاله نخست جایگاه معرفتىِ ریاضى، با استناد به اقوال افلاطون و دکارت بیان و سپس نوعى از معرفت ریاضى که حاصل درک عمیق مفاهیم ریاضى است، به منزله معرفت و بصیرت ریاضى معرفى مى شود؛ سپس ضمن تعیین حوزه این نوع معرفت، با استفاده از مفهوم واژه الگوریتم، چگونگى مراحل دستیابى به آن، کانون بحث قرار مى گیرد. همچنین درباره جنبه معرفتى مفهوم تابع و ساختار گراف در نظریه گراف ها، مصادیقى ارائه مى شود.
Lakatos and Hersh on Mathematical Proof(مقاله علمی وزارت علوم)
حوزه های تخصصی:
The concept of Mathematical Proof has been controversial for the past few decades. Different philosophers have offered different theories about the nature of Mathematical Proof, among which theories presented by Lakatos and Hersh have had significant similarities and differences with each other. It seems that a comparison and critical review of these two theories will lead to a better understanding of the concept of mathematical proof and will be a big step towards solving many related problems. Lakatos and Hersh argue that, firstly, “mathematical proof” has two different meanings, formal and informal; and, secondly, informal proofs are affected by human factors, such as individual decisions and collective agreements. I call these two thesis, respectively, “proof dualism” and “humanism”. But on the other hand, their theories have significant dissimilarities and are by no means equivalent. Lakatos is committed to linear proof dualism and methodological humanism, while Hersh’s theory involves some sort of parallel proof dualism and sociological humanism. According to linear proof dualism, the two main types of proofs are provided in order to achieve a common goal: incarnation of mathematical concepts and methods and truth. However, according to the parallel proof dualism, two main types of proofs are provided in order to achieve two different types of purposes: production of a valid sequence of signs (the goal of the formal proof) and persuasion of the audience (the goal of the informal proof). Hersh’s humanism is informative and indicates pluralism; whereas, Lakatos’ version of humanism is normative and monistic.
تأملى بر استقراى ریاضى(مقاله علمی وزارت علوم)
حوزه های تخصصی:
یکى از اصول مهمى که در اثبات برخى از قضایاى اساسى منطق جدید و بسیارى از قضایاى ریاضیات از آن بهره مى گیرند اصل استقراى ریاضى است. پرسش این است که آیا این اصل بدیهى است؟ به ظاهر شهودهاى عرفى، بداهت آن را تأیید نمى کنند. لذا وضوح برهان قضایاى مبتنى بر اصل فوق نیز کانون تردید است و توجیه برهان چنین قضایایى، مشروط به اذعان بر درستى اصل استقراى ریاضى خواهد بود. گمان مى کنیم اصل فوق با تکیه بر مفاهیم و اصول اولیه مجموعه اعداد طبیعى اثبات پذیر است و بدین ترتیب با اثبات آن، دغدغه احتمالى تشکیک در استحکام منطقى اصل استقراى ریاضى و قضایاى مبتنى بر آن در منطق جدید مرتفع خواهد شد.
مقبولیّت اثباتهای تصویری در ریاضیات(مقاله علمی وزارت علوم)
حوزه های تخصصی:
اغلب ریاضی دانان اثباتهای تصویری را به عنوان یک نوع اصیل از اثباتهای ریاضیاتی نمی پذیرند یا در پذیرش آنها تردید دارند. در این مقاله ده ایراد متداول یا احتمالی وارد بر این نوع اثباتها صورت بندی شده و جداگانه مورد ارزیابی نقادانه قرارگرفته است. در هریک از این ایرادها ادعا می شود که اثباتهای تصویری فاقد یکی از ویژگی هایی هستند که برای اثباتهای ریاضیاتی اساسی اند یا باید اساسی باشند: صوری بودن، نمادی بودن، دقیق بودن، اعتمادپذیری، وارسی پذیری، کلی بودن، مشروعیّت، خودبسندگی، فراگیر بودن و زایا بودن. اما به نظر می رسد که هیچ کدام از این ایرادها وارد نیست و بنابراین نپذیرفتن این نوع از اثباتها بیشتر معلول عوامل روان شناختی و جامعه شناختی، به خصوص غلبه تلقی صورت گرایانه در جامعه ریاضی و القاء آموزه های صورت گرایانه در نظام های آموزش ریاضی است تا دلایل منطقی یا روش شناختی. ما نه تنها دلایل قوی بر رد کلی و پیشینی این نوع اثبات، به عنوان یک الگوی استنتاجی در ریاضیات، نداریم بلکه دلایل خوبی برای به رسمیت شناختن آن داریم. آنچه در اینجا حائز اهمیّت است آگاهی از نقشی است که این نوع از اثباتها در کل ریاضیات دارد یا باید داشته باشد، نه کمتر و نه بیشتر.