به کارگیری الگوریتم ژنتیک در بهینه سازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها(مقاله علمی وزارت علوم)
حوزه های تخصصی:
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی می توانند به اعتبارسنجی مشتریان بانکی بپردازند. مسئله ی اصلی ساخت درختان تصمیم گیری است که بتوانند به طور بهینه مشتریان را طبقه بندی کنند. در این مقاله یک مدل مناسب اعتبارسنجی مشتریان بانک ها برای اعطای تسهیلات اعتباری متناسب با هر طبقه مبتنی بر الگوریتم ژنتیک ارایه می شود. الگوریتم های ژنتیک می توانند با انتخاب ویژگی های مناسب و ساخت درختان تصمیم گیری بهینه به اعتبارسنجی مشتریان کمک کنند. در ساخت این مدل فرآیند توسعه در شناخت الگو و فرآیند CRISP برای اعتبارسنجی مشتریان به کار رفته است. مدل طبقه بندی پیشنهادی مبتنی بر تکنیک های خوشه بندی، انتخاب ویژگی ها، درختان تصمیم گیری و الگوریتم ژنتیک است. این مدل به انتخاب و ترکیب بهترین درختان تصمیم گیری مبتنی بر معیارهای بهینگی و ساخت درخت تصمیم گیری نهایی برای اعتبارسنجی مشتریان می پردازد. نتایج نشان می دهد که دقت طبقه بندی مدل طبقه بندی پیشنهادی به طورتقریبی از تمام مدل های درخت تصمیم گیری مقایسه شده در این مقاله بالاتر است. هم چنین تعداد برگ ها و اندازه ی درخت تصمیم گیری و در نتیجه ی پیچیدگی آن از همه کمتر است.