The human resource management works closely with all the employees in the organization. An HRM must allow the employees to make constructive criticism when there is a need for it. The duty of organizing the company towards achieving their set goals lies in the hands of the HRM. A Human Resource management process can best be distinct as a tool which is utilized to collect, organize, present, keep and share applied information about the human resource of an organization. To this end, this research present a Throughput model framework that describes individuals' decision-making processes in an algorithmic HRM context. The model depicts how perceptions, judgments, and the use of information affect strategy selection, identifying how diverse strategies may be supported by the employment of certain decision-making algorithmic pathways. In focusing on concerns relating to the impact and acceptance of artificial intelligence (AI) integration in HRM, this research draws insights from multidisciplinary theoretical lenses, such as Al-augmented and HRM assimilation processes, AI-mediated social exchange, and the judgment and choice literature. Results highlight the use of algorithmic ethical positions in the adoption of AI for better HRM outcomes in terms of intelligibility and accountability of AI-generated HRM decision-making, which is often underexplored in existing research.