The arrangement of machines and how to move them is one of the most important issues in factories and production units, which always imposes a lot of costs on the collections. Although the arrangement of machines is done once over a long period of time, its effects are very widespread. Accordingly, it is necessary to pay more attention to the matter of arrangement. Today, cellular production is also one of the widespread production methods at the industrial level, which requires this precision. The current research aims to produce new arrangements by using artificial neural networks. The way of working is that by using the data related to the number of production parts, the production time of each part, and the group of parts under investigation, as well as the costs of the devices, this clustering is done in 3 modes of 4, 6, and 9. Performing this type of clustering has higher accuracy and speed than other methods, and the results may be somewhat different in each scenario and with each clustering time, which increases flexibility in selection.