عنصر بارش ماهیت آشوبناکی و تصادفی داشته و از این نظر دارای تغییرات ساختاری در زمانهای مختلف است. در این راستا بهدلیل عدم قطعیتهایی که وجود دارد، نوسانهای زیادی در مقدار بارش ایجاد میشود که پیشبینی این کمیت مهم را با مشکل مواجه نموده است. در این مقاله با تکنیک مقیاسبندی مجدد (R/S) و محاسبه نمای هرست (H) پیشبینیپذیری بارش در سه منطقه شیراز، کرمان و مشهد انجام شد. نمای هرست نشان داد که پارامتر بارش قابلیت پیشبینیپذیری را دارد، زیرا H از 5/0 بزرگتر بوده و بمراتب بهمقدار 1 نزدیکتر است. بهطوریکه نمای هرست از حداقل 8/0 در ایستگاه مشهد تا حداکثر 92/0 در ایستگاه شیراز در نوسان بود. به منظور پیشبینی بارش از شبکههای عصبی مصنوعی استفاده شد. نوع پارامترهای ورودی براساس آزمون همبستگی پیرسون از بین دادههای غیربارشی، ترکیبی از دادههای دمایی و رطوبتی بودند. تعداد پارامترهای ورودی، تعداد لایههای میانی و سایر اطلاعات مربوط به شبکه عصبی مصنوعی به صورت تصادفی انتخاب و پیشنهاد شدند. در مجموع از شبکههای عصبی پرسپترون چند لایه برای برآورد بارش استفاده شد. مقایسه عملکرد شبکههای عصبی، نشان داد که استفاده از 3 و 4 پارامتر هواشناسی، بهترین رتبه برآوردگری را داشتهاند. آرایشهای پیشنهادی برای ایستگاه شیراز، 1-21-21-3، کرمان 1-25-25-3 و مشهد 1-19-19-4 دارای ضریب همبستگی بیش از 91 درصد شد. اعتبارسـنجی مدلهای بارش نشان داد که شـبکههای طراحی شـده برای پارامتر بارش در ایستگاههای مشهد، شیراز و کرمان به ترتیب با خطای 4، 11 و 14 درصد، دارای بهترین عملکرد بودهاند. در مجموع نتایج نشان میدهند که استفاده از روش شبکه عصبی با درنظر گرفتن اطلاعات دمایی و رطوبتی، نتایج مناسبی برای توصیف فرآیند و ترکیب آنها در پیشبینی، بهدست میدهند.