مطالب مرتبط با کلیدواژه

Opinion Mining


۱.

Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Social networking Stock Prediction Group Emotion Collective Emotion Sentiment Analysis Opinion Mining Neural Network

حوزه های تخصصی:
تعداد بازدید : ۲۴۶ تعداد دانلود : ۱۶۹
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns. In this study, we have analyzed two statistical samples, the first being a large dataset containing a variety of tweets with an emotional tag. That is, it needed a set that had already been extracted from each individual tweet by a trusted human or machine. Consequently, we have collected posts on Facebook in an eighty-day period. In this study, we used a tagged dataset using Python's programming language and vector-to-word algorithm. The research results show that, we need stock change information, machine learning and sentiment analysis, and on paper we conclude that positive news about a company excites people to have positive opinions about it which in turn results in people encouraging each other to buy and hold stocks. Meanwhile, the opposite trend is also true, but everything will not always be easy and clear, and it is in areas of high complexity and mental uncertainty that the art of using the three elements mentioned above is evident.
۲.

Opinion Mining on Viet Thanh Nguyen’s The Sympathizer Using Topic Modelling and Sentiment Analysis(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Opinion Mining Sentiment Analysis Spatial Analysis The Sympathizer

حوزه های تخصصی:
تعداد بازدید : ۲۰۹ تعداد دانلود : ۱۰۲
In attempts to examine the mapped spaces of a literary narrative, various quantitative approaches have been deployed to extract data from texts to graphs, maps, and trees. Though the existing methods offer invaluable insights, they undertake a rather different project than that of literary scholars who seek to examine privileged or unprivileged representations of certain spaces. This study aims to propose a computerized method to examine how matters of space and spatiality are addressed in literary writings. As the primary source of data, the study will focus on Viet Thanh Nguyen’s The Sympathizer (2015), which explores the lives of Vietnamese diaspora in two geographical locations, Vietnam, and America. To examine the portrayed spatial relations, that is which country is privileged over the other, and to find out the underlying opinion about the two places, this study performs topic modelling with Latent Dirichlet Allocation (LDA) and Latent Semantic Analysis (LSA) by using TextBlob. In addition, Python is used as the analytical tool for this project as it supports two LDA algorithms: Gensim and Mallet. To overcome the limitation that the performance of the model relies on the available libraries in Python, the study employs machine learning approach. Even though the results indicated that both geographical spaces are portrayed slightly positively, America achieves a higher polarity score than Vietnam and hence seems to be the favored space in the novel. This study can assist literary scholars in analyzing spatial relations more accurately in large volumes of works.
۳.

Comparative Analysis of Link-based and Content-based Methods for Opinion Mining in Persian language(مقاله علمی وزارت علوم)

تعداد بازدید : ۲۵۶ تعداد دانلود : ۱۱۰
Twitter has provided a convenient platform to express feelings and opinions in different areas. Opinion mining in Twitter can be considered as studying the overall sentiment of a tweet. There are two general categories of sentiment analysis methods in the Persian language, linked-base methods and, content-based methods. In this study, we implement a new link-based method for improving opinion classification in the Persian language. To compare with the content-based method, we implement a content-based method using Naïve Bayes Method with two different weighting Methods: TF/IDF and Chi-Square. The TF/IDF method has good results in previous Persian language studies. The Chi-Square method has not been used in the Persian language researches, but the accuracy is fairly good in English. The results show that the improvement in the language-independent methods is remarkable and is in accordance with this research, the precision of the proposed algorithm for positive and negative comments was 98.87% and 97.87%, and the recall value for positive and negative comments was 99.24% and 96.84% respectively. The results also show that because of complexities in Persian syntax and lack of proper natural language processing tools in Persian, content-based algorithms operate poorly compared to English.
۴.

Sentiment Analysis User Comments On E-commerce Online Sale Websites(مقاله علمی وزارت علوم)

تعداد بازدید : ۳۶۲ تعداد دانلود : ۱۱۳
E-commerce websites, based on their structural ontology, provides access to a wide range of options and the ability to deal directly with manufacturers to receive cheaper products and services as well as receiving comments and ideas of the users on the provided products and services. This is a valuable source of information, which includes a large number of user reviews. It is difficult to check the bulk of the comments published manually and non-automatically. Hence, sentiment analysis is an automated and relatively new field of study, which extracts and analyzes people's attitudes and emotions from the context of the comments. The primary objective of this research is to analyze the content of users' comments on online sale e-commerce websites of handcraft products. Sentiment analysis techniques were used at sentence level and machine learning approach.  First, the pre-processing steps and TF-IDF method were implemented on the comments text. Next, the comments text were classified into two groups of products and services comments using Support Vector Machine (SVM) algorithm with 99.2% accuracy. Finally, the sentiment of comments was classified into three groups of positive, negative and neutral using XGBoost algorithm. The results showed, 95.23% and 95.12% accuracies for classification of sentiments in comments about products and services, respectively.