مطالب مرتبط با کلیدواژه
۱.
۲.
۳.
۴.
۵.
۶.
معاملات الگوریتمی
منبع:
چشم انداز مدیریت مالی سال دهم پاییز ۱۳۹۹ شماره ۳۱
153 - 184
حوزههای تخصصی:
در سال های اخیر مقالات و پژوهش های زیادی در زمینه ی استفاده از روش های یادگیری ماشینی و معاملات الگوریتمی در بازارهای مالی به منظور کسب بازدهی منتشر شده است. هدف این پژوهش ایجاد یک سیستم معاملاتی خودکار با استفاده از پردازش تصویر به وسیله ی شبکه عصبی پیچشی است. بدین منظور، در ابتدا پس از دریافت داده های مورد نیاز برای سهام منتخب، 28 اندیکاتور تحلیل تکنیکال انتخاب و مقادیر هر کدام به صورت جداگانه برای هر سهم محاسبه شد. سپس سری های زمانی این اندیکاتورها به تصاویر 2 بعدی تبدیل شده و در نتیجه برای هر داده روی سری زمانی قیمت سهم، یک تصویر دو بعدی با ابعاد 28×28 ساخته شد. پس از برچسب گذاری هر تصویر با یکی از برچسب های خرید، فروش و نگهداری، این تصاویر به شبکه عصبی پیچشی وارد شدند. همچنین برای بررسی بازدهی و ریسک سیستم ارائه شده، یک روش برای خرید و فروش بر اساس نتایج مدل در زمان گذشته معرفی شده است. نتایج پژوهش نشان می دهد که در 80% موارد، این روش بازدهی بیشتری نسبت به استراتژی مرسوم خرید و نگهداری کسب کرده است. همچنین همواره از نظر معیارهای ریسک انحراف معیار و بیشترین افت بهتر عمل می کند. همچنین، نتایج نشان دهنده ی تأثیر زیاد کارمزد معاملات بورس اوراق بهادار تهران بر روی بازدهی مدل است. به گونه ای که مدل چند برابر سود کسب شده را برای پرداخت کارمزد از دست می دهد.
استراتژی بهینه اجرای معاملات بزرگ با رویکرد شبیه سازی عامل گرا(مقاله علمی وزارت علوم)
منبع:
تحقیقات مالی دوره ۱۹ تابستان ۱۳۹۶ شماره ۲
262 - 239
حوزههای تخصصی:
سرمایه گذارانی که خواهان اجرای سفارش های بزرگ هستند، همواره با موازنه اثر قیمتی و هزینه فرصت (ریسک اجرای معامله) مواجه اند. هدف از این پژوهش، یافتن روش بهینه ای برای اجرای چنین سفارش هاست. این پژوهش با استفاده از داده های تاریخی سهام در بورس اوراق بهادار تهران، ابتدا احتمال انواع سفارش گذاری ها شامل سفارش بازار، سفارش در شکاف قیمتی و سفارش محدود را برای سمت خرید و سمت فروش به طور جداگانه محاسبه کرده، سپس استراتژی بهینه معاملاتی را بر اساس معیار قیمت میانگین موزون حجمی (VWAP) بررسی می کند. در بازار معاملاتی شبیه سازی شده، اثر قیمتی برای سفارش های بزرگ نیز در نظر گرفته شده است. روش شبیه سازی، روش عامل گرا است و برای آموزش عامل، از روش یادگیری کیو که یکی از روش های یادگیری تقویتی است، استفاده کردیم. نتایج این پژوهش نشان می دهد برای هر سفارش بزرگ خرید، استراتژی با استفاده از انواع سفارش می تواند بهتر از استراتژی هایی با استفاده از تنها یک نوع سفارش باشد. استراتژی بهینه توانسته است به طور متوسط قیمت میانگین موزون حجمی (هزینه های اجرای معاملات) را 137/0 درصد نسبت به بازار کاهش دهد.
ارائه مدل معاملاتی با فراوانی زیاد، همراه با مدیریت پویای سبد سهام به روش یادگیری تقویتی در بورس اوراق بهادار تهران(مقاله علمی وزارت علوم)
منبع:
تحقیقات مالی دوره ۲۰ بهار ۱۳۹۷ شماره ۱
1 - 16
حوزههای تخصصی:
هدف: شکاف بین زمان دریافت سیگنال خرید/ فروش و آغاز روند تغییر قیمت در بازارهای نوظهور، بستر مناسبی برای پیاده سازی سیستم های معاملات الگوریتمی ایجاد می کند. ارائه یک سیستم معاملاتی با تکرار زیاد، مزایا (استفاده از نوسان های درون روزی) و معایبی (هزینه زیاد معاملاتی) دارد که با طراحی درست آن و اصلاح مقررات معامله، می توان مزایای آن را افزایش داد و معایبش را کنترل کرد.روش: در این پژوهش، به ارائه رویکرد استفاده از خودمعامله گرها برای پیش بینی روند آتی سهم و بهره گیری از روش یادگیری تقویتی به منظور مدیریت پویای سبد سهام پرداخته شده و دو مدل بر همین پایه ارائه شده است. مدل نخست با بهره بردن از پیشنهاد خودمعامله گرها، به معامله با مقدار ثابت اقدام می کند. مدل دوم که به نوعی بسط داده شده مدل نخست است، به کمک روش یادگیری تقویتی، به مدیریت پویای سبد سهام می پردازد.یافته ها: نتایج نشان می دهد عملکرد هر دو مدل در بازارهای نزولی و نرمال، بهتر از استراتژی خرید و نگهداری است. همچنین بر اساس نتایج، در تمام بازارها مدل دوم در مقایسه با مدل نخست، عملکرد بهتری دارد.نتیجه گیری: به طور کلی در بازار صعودی بهترین استراتژی، خرید و نگهداری دارایی است، در نتیجه نمی توان از الگوریتم های پیشنهادی عملکردی بهتر از این استراتژی انتظار داشت. از سویی دیگر می توان گفت روش شبکه عصبی برای پیش بینی روند آتی سهم با رویکرد ارائه شده در این پژوهش، عملکرد بسیار مناسبی در بازارهای نزولی و نرمال داشته است. همچنین پیاده سازی روش یادگیری تقویتی به منظور مدیریت پویای سبد سهام توانسته عملکرد مدل را بسیار بهبود بخشد.
استراتژی سفارش گذاری: تقابل واکنش بازار و ریسک اجرای معاملات(مقاله علمی وزارت علوم)
منبع:
تحقیقات مالی دوره ۲۰ تابستان ۱۳۹۷ شماره ۲
151 - 172
حوزههای تخصصی:
هدف: بازار بورس ایران در سال های گذشته تغییراتی در آن اعمال شده و در انتظار تغییرات جدی تر است. در این پژوهش یک مدل بهینه سفارش گذاری با رویکرد ریزساختار بازار ارائه شده که در ساخت بازار مصنوعی استفاده شده و در انتها عملکرد آن مورد بررسی قرار گرفته است. روش: با کمک شبیه سازی بازار می توان به مواردی همچون تنظیم بازار و بررسی عملکرد استراتژی های معاملاتی پرداخت. اما برای کشف قیمت تابلوی ثبت سفارش سهام از شبیه سازی عامل گرا (agent-based) استفاده کرده ایم که الگوریتم تصمیم گیری آن شامل انتخاب نوع سفارش (خرید یا فروش)، انتخاب نوع اقدام معامله گران (ثبت سفارش جدید یا لغو سفارش در صف)، انتخاب استراتژی معاملاتی و انتخاب قیمت بهینه ی سفارش - برای یکی از عامل ها (agent) - است. از آنجاکه یکی از چالش های مهم سرمایه گذاران، یافتن قیمت بهینه ی سفارش گذاری است، در این پژوهش به این موضوع پرداخته شده است و سعی شده بازار بورس تهران به گونه ای شبیه سازی شود تا تغییرات ریزساختار بازار را مطالعه کند. یافته ها: داده های پژوهش شامل داده های درون-روزی تابلوی ثبت سفارش سهم فولاد مبارکه اصفهان در 5 سطح و برای ۷۱ روز معاملاتی است. در سیستم شبیه سازی پژوهش، با بررسی داده های تاریخی سهم فولاد مبارکه اصفهان، رفتار معاملاتی عامل ها استخراج شده است. همچنین با توجه به بحث ریزساختار بازار، تقابل بین ریسک اجرای معاملات و کنترل واکنش بازار به عنوان یک هزینه معاملاتی، مدل سازی شده است. بازار برای مدت 30 روز شبیه سازی شده و نتایج حاکی از آن است که استراتژی سفارش گذاری بهینه شده، از لحاظ میانگین قیمت خرید سهم، میانگین زمان انتظار برای اجرای معامله هر سهم و میانگین حجم معامله شده از سفارش، در مقایسه با سایر استراتژی های مورد بررسی در بازار عملکرد بهتری داشته است. نتیجه گیری : نتایج این پژوهش نشان می دهد به کارگیری ریسک اجرایی شدن سفارش و هزینه معاملاتی بطور هم زمان در استراتژی سفارش گذاری، عملکرد بهتری نسبت به استراتژی های مبتنی بر درجه ی تهاجمی بودن معامله گران بازار دارد.
بهینه سازی پرتفوی سهام در بورس اوراق بهادار تهران (کاربرد رهیافت یادگیری تقویتی)(مقاله علمی وزارت علوم)
حوزههای تخصصی:
هدف این مقاله کاربرد معاملات الگوریتمی با تمرکز بر رویکرد یادگیری تقویتی برای بهینه سازی پرتفوی سهام های منتخب است. این پژوهش از حیث هدف، کاربردی و از نظر نوع داده، کمّی و از لحاظ روش، توصیفی - اکتشافی و از منظر طرح تحقیق، پس رویدادی است. جامعه آماری این پژوهش، 672 شرکت بورسی است که از این تعداد، داده های پنج شرکت (نمونه آماری) طی دوره زمانی 1396-1400 بررسی شده است. یافته های تحقیق در دوره های صعودی و نزولی بازار نشان داد که رویکرد یادگیری تقویتی در بازارهای صعودی و نزولی به صورت معناداری بر رویکرد خرید و نگهداری برتری دارد و عملکرد بهتری ارائه داده است و نتایج با عملکرد الگوریتم ها در بازارهای بورس سازگار است. نتایج آشکار کرد که از دیدگاه سودآوری، رویکرد یادگیری تقویتی نسبت به رهیافت خرید و نگه داری، عملکرد بهتر و موثرتری داشته است؛ بنابراین، به کارگیری روش یادگیری تقویتی پیشنهاد می شود.
مقایسه عملکرد سیستم های معاملات الگوریتمی مبتنی بر یادگیری ماشین در بازار رمز ارزها(مقاله علمی وزارت علوم)
منبع:
راهبرد مدیریت مالی سال ۱۲ بهار ۱۴۰۳ شماره ۱ (پیاپی ۴۴)
161 - 190
حوزههای تخصصی:
هدف از این پژوهش استفاده از مدل یادگیری جمعی برای ترکیب پیش بینی های مدل های جنگل تصادفی، حافظه طولانی کوتاه مدت و شبکه عصبی بازگشتی جهت ارائه یک سیستم معاملاتی الگوریتمی مبتنی بر آن می باشد. در این پژوهش یک مدل پیش بینی مبتنی بر مدل یادگیری ماشین جمعی ارائه شده است و عملکرد آن با هر یک از زیر الگوریتم ها و داده های واقعی مقایسه می شود. در این پژوهش در مرحله اول با استفاده از سه مدل یادگیری ماشین، سقف و کف قیمت بیت کوین پیش بینی شده است. در مرحله دوم، خروجی های مدل ها به عنوان متغیرهای ویژگی به مدل های XGboost و LightGBM جهت پیش بینی سقف و کف ها ارائه شده است. سپس در مرحله سوم خروجی های مرحله دوم، با الگوی دسته بندی رای گیری جمعی برای پیش بینی سقف و کف بعدی، ترکیب می شوند. داده های سقف و کف قیمت بیت کوین در تایم فریم 1 ساعته از تاریخ 1/1/2018 الی آخر 30/6/2022 به عنوان متغیر هدف و 31 اندیکاتور تحلیل تکنیکال به عنوان متغیر ویژگی برای سه مدل در مرحله اول استفاده شده اند. در نهایت مقادیر پیش بینی و سیستم های معاملاتی الگوریتمی با داده های واقعی برای 3 مدل و مدل یادگیری جمعی معرفی شده مورد ارزیابی و مقایسه قرار گرفتند. نتایج به دست آمده نشان دهنده ارتقا عملکرد دقت و صحت مدل یادگیری جمعی پیشنهاد شده در پیش بینی سقف و کف بیت کوین و همچنین، عملکرد بهتر آن نسبت به زیر الگوریتم ها می باشد