مطالب مرتبط با کلیدواژه

Xgboost


۱.

Sentiment Analysis User Comments On E-commerce Online Sale Websites(مقاله علمی وزارت علوم)

تعداد بازدید : ۳۹۳ تعداد دانلود : ۱۴۱
E-commerce websites, based on their structural ontology, provides access to a wide range of options and the ability to deal directly with manufacturers to receive cheaper products and services as well as receiving comments and ideas of the users on the provided products and services. This is a valuable source of information, which includes a large number of user reviews. It is difficult to check the bulk of the comments published manually and non-automatically. Hence, sentiment analysis is an automated and relatively new field of study, which extracts and analyzes people's attitudes and emotions from the context of the comments. The primary objective of this research is to analyze the content of users' comments on online sale e-commerce websites of handcraft products. Sentiment analysis techniques were used at sentence level and machine learning approach.  First, the pre-processing steps and TF-IDF method were implemented on the comments text. Next, the comments text were classified into two groups of products and services comments using Support Vector Machine (SVM) algorithm with 99.2% accuracy. Finally, the sentiment of comments was classified into three groups of positive, negative and neutral using XGBoost algorithm. The results showed, 95.23% and 95.12% accuracies for classification of sentiments in comments about products and services, respectively.
۲.

Predicting the Top and Bottom Prices of Bitcoin Using Ensemble Machine Learning(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Algorithmic Trading top and bottom price prediction ensemble machine learning Xgboost LightGBM

حوزه‌های تخصصی:
تعداد بازدید : ۱۸۹ تعداد دانلود : ۱۵۵
The purpose of the present study is to use the ensemble learning model to combine the predictions of Random Forest (RF), Long-Short Term Memory (LSTM), and Recurrent Neural Network (RNN) models for the Top and Bottom Prices of Bitcoin. To this aim, in the first stage, Bitcoin's top and bottom prices are predicted using three machine learning models. In the second stage, the outputs of the models are presented as feature variables to the Extreme Gradient Boosting (Xgboost) and Light Gradient Boosting Machine (LightGBM) models to predict the price tops and bottoms. Then, in the third stage, the outputs of the second stage are combined through the voting ensemble classifier pattern to predict the next top and bottom prices. The data of top and bottom Bitcoin prices in the 1-hour time frame from 1/1/2018 to the end of 6/30/2022 are used as target variables and 31 technical analysis indicators as feature variables for the three models in the first stage. 70% of the data is regarded as learning data, and the remaining 30% is considered for the second and third stages. In the second phase, 50% of the data is considered for learning the output of the previous stage and 50% for the test data. Finally, the prediction values are evaluated with real data for the three models and the proposed ensemble learning model. The results reveal the improvement of the performance, precision, and accuracy of the ensemble model compared to weak learning models.
۳.

مقایسه عملکرد سیستم های معاملات الگوریتمی مبتنی بر یادگیری ماشین در بازار رمز ارزها(مقاله علمی وزارت علوم)

کلیدواژه‌ها: معاملات الگوریتمی پیش بینی سقف و کف قیمت یادگیری ماشین جمعی Xgboost LightGBM

حوزه‌های تخصصی:
تعداد بازدید : ۱۱۶ تعداد دانلود : ۹۸
هدف از این پژوهش استفاده از مدل یادگیری جمعی برای ترکیب پیش بینی های مدل های جنگل تصادفی، حافظه طولانی کوتاه مدت و شبکه عصبی بازگشتی جهت ارائه یک سیستم معاملاتی الگوریتمی مبتنی بر آن می باشد. در این پژوهش یک مدل پیش بینی مبتنی بر مدل یادگیری ماشین جمعی ارائه شده است و عملکرد آن با هر یک از زیر الگوریتم ها و داده های واقعی مقایسه می شود. در این پژوهش در مرحله اول با استفاده از سه مدل یادگیری ماشین، سقف و کف قیمت بیت کوین پیش بینی شده است. در مرحله دوم، خروجی های مدل ها به عنوان متغیرهای ویژگی به مدل های XGboost  و LightGBM جهت پیش بینی سقف و کف ها ارائه شده است. سپس در مرحله سوم خروجی های مرحله دوم، با الگوی دسته بندی رای گیری جمعی برای پیش بینی سقف و کف بعدی، ترکیب می شوند. داده های سقف و کف قیمت بیت کوین در تایم فریم 1 ساعته از تاریخ 1/1/2018 الی آخر 30/6/2022 به عنوان متغیر هدف و 31 اندیکاتور تحلیل تکنیکال به عنوان متغیر ویژگی برای سه مدل در مرحله اول استفاده شده اند. در نهایت مقادیر پیش بینی و سیستم های معاملاتی الگوریتمی با داده های واقعی برای 3 مدل و مدل یادگیری جمعی معرفی شده مورد ارزیابی و مقایسه قرار گرفتند. نتایج به دست آمده نشان دهنده ارتقا عملکرد دقت و صحت مدل یادگیری جمعی پیشنهاد شده در پیش بینی سقف و کف بیت کوین و همچنین، عملکرد بهتر آن نسبت به زیر الگوریتم ها می باشد
۴.

کاربرد XGBoost برای پیش بینی درماندگی مالی شرکت های پذیرفته شده در فرابورس و بورس اوراق بهادار تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی درماندگی مالی Xgboost یادگیری ماشین داده کاوی بورس اوراق بهادار تهران

حوزه‌های تخصصی:
تعداد بازدید : ۵۶ تعداد دانلود : ۶۷
هدف این مقاله، پیش بینی درماندگی مالی بالقوه شرکت های پذیرفته شده در فرابورس و بورس اوراق بهادار است. بدین منظور، دامنه گسترده ای از ویژگی ها از جمله متغیرهای حسابداری تعهدی، حسابداری نقدی، بازار سهام، مکانیسم های حاکمیت شرکتی و شاخص های اقتصاد کلان برای پیش بینی درماندگی مالی شرکت های نمونه شناسایی شده اند. نمونه نهایی شامل 421 شرکت و در نتیجه، 3670 شرکت-سال مشاهده است. سپس، داده آماده شده با استفاده از نسبت 70 به 30 به مجموعه داده آموزشی و آزمایشی تفکیک شد. در این پژوهش، تکینک های پیش پردازش داده یادگیری ماشین نظیر استانداردسازی نمره Z، وان-هات انکدینگ، اعتبارسنجی متقابل K لایه طبقه ای، همراه با مهندسی ویژگی برای بهبود عملکرد طبقه بندی کننده بکار گرفته شدند. روش اعتبارسنجی متقابل K لایه طبقه ای با (5=K) برای برآورد عملکرد پیش بینی مدل طی مرحله آموزش استفاده شد. طی مرحله آموزش، میزان سازی اَبرپارامتر مدل با استفاده از جستجوی شبکه ای انجام شد. افزون بر این، تکنیک SMOTE همراه با معیار مختص مسائل نامتوازن یعنی نمره F1 برای غلبه بر مسأله نامتوازنی افراطی کلاس ها استفاده شده است.بر اساس نتایج تجربی، مدل XGBoost به نمرهF1، ضریب همبستگی متیوز، فراخوانی و دقتی به ترتیب برابر با 90%، 90%، 100% و 82% بر روی مجموعه آموزشی دست یافت. سرانجام، مدل پیشنهادی بر روی مجموعه آزمایشی کنار گذاشته شده آزمون شد که به نمرهF1، ضریب همبستگی متیوز، فراخوانی و دقتی به ترتیب برابر با 52%، 52%، 73% و 41% بر روی مجموعه آزمایشی منجر شد. این اطلاعات، ابزار قدرتمندی برای پیش بینی درماندگی مالی شرکت ها  فراهم می کنند.
۵.

مدل پیش بینی تقاضای زنجیره تأمین با تنوع محصولی بالا با استفاده از روش های یادگیری ماشین مبتنی بر تقویت گرادیان(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی تقاضا تنوع محصولی بالا Xgboost Gradient Boosting

حوزه‌های تخصصی:
تعداد بازدید : ۲۲ تعداد دانلود : ۱۴
پیش بینی تقاضای محصولات زنجیره تأمین برای تعیین استراتژی ها و تصمیم گیری ها موضوعی بسیار با اهمیت و پرچالش است. با افزایش تنوع و تعداد محصولات، این چالش ها نیز افزایش می یابد. ارائه چارچوب ها و روش هایی که با وجود تنوع محصولی، تفاوت در کاربردها و ویژگی ها و حجم داده های مختلف، از انعطاف پذیری، دقت و مزیت های لازم برای پیش بینی همه دسته های محصولی برخوردار باشد، برای مدیران حیاتی است. در این راستا، دو مدل یادگیری با نظارت، XGBoost Regressor (XGBR) و Gradient Boosting Regressor (GBR)، بر روی مجموعه داده های Global Superstore، در سایت Kaggle پیاده سازی شده است. این مجموعه داده شامل 3788 محصول در سه Category محصولی متنوع، هفده Sub Category و51،290 سفارش است. حجم داده های محدود محصولات سبب می گردد پیش بینی بسیاری از محصولات و کسب نتیجه مناسب از روش ها میسر و مفید نگردد. با توجه به اینکه در این تحقیق تجربی هدف پیش بینی تقاضا، بکارگیری در تصمیمات استراتژیک است، رویکردی تجمیع محصولی برای این مسئله پیشنهاد شده که با توجه به مشابهت در محصولات Sub Categoryها پیش بینی آنها به صورت تفکیک شده صورت گیرد. به منظور بررسی اثر میزان داده بر عملکرد مدل ها، داده های مجموعه داده با استفاده از تکنیک Augmentation Data افزایش یافته و با اجرای مجدد مدل ها، نتایج پیش بینی دو مدل با هم مقایسه شده اند. براساس ارزیابی نتایج پیش بینی با داده های افزایش یافته با دو معیار MSE و MAE، مدل XGBR در کمترین مقدار به ترتیب به 12/0 و 10/0، و مدل GBR نیز به مقادیر 13/0 و 15/0 دست یافته است. همچنین، نتیجه معیار D2 Score در مدل XGBR در بیشترین مقدار 97/0 و در مدل GBR مقدار 96/0 است. با افزایش داده ها، مقادیر معیارهای اندازه گیری خطای به صورت چشمگیری و تا بیش از 80 درصد کاهش یافته و در داده های با حجم بیشتر، XGBR برتری نسبی دارد. چارچوب و مدل های پیشنهادی می تواند در صنایع با مسائل مشابه در سطح استراتژی استفاده شود.