سنجش از دور و GIS ایران

سنجش از دور و GIS ایران

سنجش از دور و GIS ایران سال 17 بهار 1404 شماره 1 (پیاپی 65) (مقاله علمی وزارت علوم)

مقالات

۱.

شناسایی مزارع سیب زمینی برمبنای شاخص فنولوژی و الگوریتم ماشین بردار پشتیبان با استفاده از سامانه رایانش ابری Google Earth Engine(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شناسایی محصول سیب زمینی سری زمانی تصاویر ماهواره سنتینل 2 سامانه گوگل ارث انجین ماشین بردار پشتیبان

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۲
سابقه و هدف: سیب زمینی چهارمین محصول کشت شده در جهان است. با توجه به اهمیت استراتژیک این محصول در تأمین امنیت غذایی، تهیه نقشه های دقیق از سطوح زیرکشت آن اطلاعات ضروری برای تخمین و پیش بینی میزان عملکرد محصول در مقیاس های متفاوت را فراهم می کند. اگرچه تا کنون رویکردهای متفاوت سنجش از دور، مبتنی بر سنجنده های اپتیکی یا مایکروویو، به طور گسترده برای پایش مزارع گوناگون (شامل سطح زیرکشت محصولات، شرایط و پیش بینی عملکرد آنها) به کار رفته، با استفاده از داده های سنجش از دور و یادگیری ماشین کمتر برای شناسایی مزارع سیب زمینی اقدام شده است. در این راستا، پژوهش حاضر به شناسایی و نگاشت محصول سیب زمینی در قطب تولید آن در کشور پرداخته است و سعی در مهیا سازی اطلاعات دقیق سطوح زیرکشت این محصول، برای حوزه مدیریت کلان کشاورزی را دارد. مواد و روش ها: ازآنجاکه بیشتر محصولات کشاورزی، در طول دوره کشت، ویژگی های طیفی زمانی منحصربه فردی دارند، این پژوهش با استفاده از تصاویر سری زمانی و بدون آستانه گذاری صریح، روشی را برای تمایز دادن مزارع سیب زمینی از سایر محصولات مطرح کرده است. طبق این روش، با استفاده از لایه های مبتنی بر فنولوژی محصول سیب زمینی و نیز یادگیری ماشین، به شناسایی این محصول روی آورده شد. به منظور بهینه سازی پارامترهای داخلی الگوریتم، براساس داده های زمینی نوع محصول در سایت مورد مطالعه که مجموعاً شامل 1648 نمونه از مزارع سیب زمینی و سایر محصولات می شود، آموزش و ارزیابی مدل انجام شد. این داده ها با استفاده از گیرنده GPS دستی نمونه برداری شد. در این پژوهش، نگاشت مزارع سیب زمینی با استفاده از تصاویر ماهواره سنتینل 2 و الگوریتم ماشین بردار پشتیبان انجام شد. با تهیه لایه های ورودی مناسب که شامل شاخص فنولوژیکی محصول سیب زمینی و شاخص آماری میانه NDVI (سری زمانی تصاویر ماهواره سنتینل 2) در بازه های مشخص می شود، مزارع سیب زمینی با دقت شناسایی شد. دراِدامه، این لایه ها به منزله ورودی های ماشین بردار پشتیبان به کار رفت. به منظور آموزش مدل بهینه برای ماشین بردار پشتیبان با استفاده از کرنل RBF، مقادیر gamma و C با روش 5-fold cross validation بهینه سازی شد. سپس این مقادیر، در فرایند اجرای الگوریتم، با استفاده از سامانه رایانش ابری گوگل ارث انجین به کار رفت. کارآیی روش پیشنهادی در شهرستان های همدان و بهار که بیشترین میزان کشت این محصول را در ایران دارند، ارزیابی شد. نتایج و بحث: براساس نتایج، مقادیر بهینه برای پارامترهای داخلی مدل C=70 و γ=0.3 محاسبه شد. این مقادیر در تابع RBF، به منظور شناسایی سطوح زیرکشت محصول سیب زمینی، در نظر گرفته شد. با اجرای الگوریتم طبقه بندی و سپس اعمال فیلتر Majority، نقشه سطوح زیرکشت سیب زمینی برای منطقه مورد مطالعه تهیه شد. این نقشه بیشترین تراکم کشت محصول سیب زمینی را در محدوده مرزی دو شهرستان (شمال غرب شهرستان همدان و شرق شهرستان بهار) نشان داد. سطح زیرکشت سیب زمینی برای سال زراعی 1399-1400، در شهرستان همدان، برابر 1/4527 هکتار و در شهرستان بهار، برابر 3/6088 هکتار به دست آمد. در ارزیابی نتایج، صحت کلی و ضریب کاپا به ترتیب برای همدان، 9/90% و 82/0 و برای بهار، 3/93% و 87/0 براساس ماتریس خطا برآورد شد. نتایج پژوهش حاضر به کارآیی الگوریتم ماشین بردار پشتیبان در شناسایی سطوح زیرکشت محصول سیب زمینی اشاره دارد و همچنین نشان داده است که شاخص های منطبق بر فنولوژی سیب زمینی را می توان، به منزله ویژگی های متمایزکننده در شناسایی بهتر مزارع این محصول، استفاده کرد. نتیجه گیری: شناسایی مزارع سیب زمینی، با استفاده از لایه های ورودی شاخص های منطبق بر فنولوژی محصول در الگوریتم ماشین بردار پشتیبان، نشان داد این روش می تواند صحت شناسایی سطوح زیرکشت این محصول را در سطح پایلوت بهبود ببخشد. ازاین رو می توان، برای شناسایی سایر محصولات مهم کشاورزی و نیز در دیگر مناطق، رویکردی مشابه را پیش گرفت و نتایج را ارزیابی کرد. همچنین پیشنهاد می شود کارآیی داده های مایکروویو و سایر الگوریتم های یادگیری ماشین در پژوهش های آینده مورد توجه قرار گیرد.
۲.

ارزیابی خطر زلزله به روش هم پوشانی حسابی- وزنی برحسب شاخص پتانسیل زلزله (EPI)، جنوب غرب ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: سامانه اطلاعات مکانی (GIS) تحلیل خطر غیرارگودیک زلزله مدل رقومی ارتفاعی (DEM)

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
مقدمه: در روش هم پوشانی حسابی وزنی برحسب شاخص پتانسیل زلزله (EPI) برای ارزیابی خطر لرزه ای هر منطقه، داده های تاریخی زلزله، توزیع زمین مکانی و بزرگای زمین لرزه های گذشته، زمین ساخت فعال (نوع و طول گسل)، تراکم گسل در واحد سطح، فاصله مکان تا گسل فعال، فاصله تا کانون زلزله، شیب و تغییرات توپوگرافی باید در نظر گرفته شود و لایه های مربوط با استفاده از GIS ایجاد شوند. این روش غیرارگودیک مشکلات روابط کاهندگی و بیان ورودی ها و خروجی های تحلیل خطر را حل می کند و در تهیه نقشه خطر زلزله مناطق وسیع جغرافیایی با پیشینه لرزه خیزی غنی، دقت بسیار مناسبی دارد. در این مطالعه، خطر زلزله در منطقه جنوب غرب ایران، در مربعی به ضلع 400 کیلومتر و با مرکزیت شهر بهبهان (طول °E2417/50 و عرض ° N5985/30) به روش هم پوشانی حسابی وزنی، برحسب شاخص پتانسیل زلزله ارزیابی شده است. روش شناسی: روش هم پوشانی حسابی وزنی برمبنای برهم نهی اطلاعات رتبه بندی شده مکانی، زمین شناسی و لرزه شناسی منطقه با وزن های از قبل تعیین شده قرار دارد. شاخص پتانسیل زلزله با استفاده از رابطه زیر محاسبه می شود:                                 (1)         در این معادله، EPI شاخص پتانسیل زلزله، DEM مدل رقومی ارتفاعی، Slope زاویه شیب برحسب درجه، Den_F چگالی گسل های فعال، Den_Ev تراکم کانون های زلزله، ML بزرگی زلزله، Dis_F فاصله تا گسل فعال، Dis_epi_ev فاصله تا کانون زلزله و i و j مختصات سلول (طول و عرض جغرافیایی) هستند. شناسایی مناطق دارای پتانسیل لرزه خیزی و ارزیابی خطرهای لرزه ای نیازمند در نظر گرفتن سهم تمامی پارامترها و ترکیب آنها، مطابق با اهمیت نسبی آنهاست. پس از تهیه نقشه های لازم، با توجه به لرزه خیزی منطقه ( توزیع کانون های زلزله، منابع لرزه زا و گسل های فعال) ، ویژگی های زمین ساختی ( سن لایه، زمین ساخت)، توپوگرافی منطقه ( مدل رقومی ارتفاعی) و شیب، EPI، تعیین می شود. منطقه مورد مطالعه (مربعی به ابعاد 400 کیلومتر و با مرکزیت بهبهان) از شیب تند شمال شرق با ارتفاع 4418، به شیب ملایم جنوب غرب (محدوده خلیج فارس) به ارتفاع 125- می رسد. نتایج و بحث: روش هم پوشانی حسابی وزنی برحسب شاخص پتانسیل زلزله (EPI) در جنوب غرب ایران انجام و نتایج به صورت نقشه و جدول ارائه شد. براساس نتایج، بخش هایی از شهرهای شرقی و شمالی استان خوزستان و شهرهای جنوب غرب استان چهارمحال بختیاری، کهگیلویه و بویراحمد و اصفهان و شهرهای شمالی استان بوشهر در مناطق EPI بالا و شهرهای گچساران، بهبهان، امیدیه، بهمئی، رامهرمز، باغ ملک، هفت گل، گتوند، اردل، کوهرنگ، فارسان و کبار در منطقه خطر بالا قرار می گیرند. در منطقه مورد مطالعه، شاخص پتانسیل زلزله در محدوده 55/1تا 75/6 متغیر است. میانگین برآوردشده مقدار EPI برابر با 415/4 و انحراف معیار برابر با 94/1 است. این مقادیر نشان دهنده تغییرات نسبتاً زیاد لرزه خیزی متوسط در منطقه است. همچنین جدول مقادیر EPI درمورد تمامی شهرهای استان خوزستان تخمین زده شد و شاخص پتانسیل زلزله هر شهرستان، براساس EPI، با شاخص لرزه خیزی استاندارد آیین نامه 2800 مقایسه شد. نتایج مقایسه در اغلب شهرها هم خوانی دارد و بیشتر بودن خطر بیان شده ازطریق استاندارد 2800 در موارد اختلافی بیان می کند که مقادیر استاندارد در جهت اطمینان قرار دارد. نتیجه گیری: روش هم پوشانی حسابی وزنی، برحسب شاخص پتانسیل زلزله (EPI)، روش جهانی جدیدی است که می توان آن را در ارزیابی خطر زلزله به روش غیرارگودیک به کار برد. براساس نتایج این روش، مقادیر ویرایش 4 استاندارد 2800 کفایت لازم برای طرح لرزه ای ساختمان ها را دارد.
۳.

طبقه بندی کاربری و پوشش زمین با ترکیب الگوریتم های GLCM، SNIC و یادگیری ماشین در سامانه گوگل ارث انجین (مطالعه موردی: بخشی از اراضی شمال مهاباد، آذربایجان غربی)(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: طبقه بندی شیء گرا جنگل تصادفی شاخص های طیفی داده رادار و اپتیک اندازه سوپرپیکسل

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
سابقه و هدف: در دهه های گذشته، داده های سنجش از دور با موفقیت برای استخراج اطلاعات و تغییرات کاربری و پوشش زمین (LULC) در سطوح گوناگون، از مقیاس محلی تا جهانی، به کار رفته است. پایش دقیق و منظم این تغییرات در برنامه ریزی شهری، کشاورزی دقیق و مدیریت پایدار منابع زمین ضرورت دارد. فراهمی داده های سنجش از دور با ارائه سطوح بی سابقه ای از جزئیات مکانی و همچنین توسعه الگوریتم های طبقه بندی تصاویر ماهواره ای، باعث شده است که رویکردهای شیء گرا، در مقایسه با رویکردهای معمول، در طبقه بندی کاربری و پوشش زمین کاربرد بیشتری پیدا کنند. بدین منظور، در این مطالعه، رویکردی شیء گرا با ترکیب الگوریتم های GLCM، SNIC و یادگیری ماشین مطرح شده که هدف از آن طبقه بندی کاربری و پوشش زمین بخشی از اراضی شمال مهاباد در آذربایجان غربی، با استفاده از تصاویر ماهواره ای سنتینل 2 در سال 2019 در سامانه گوگل ارث انجین بوده است. مواد و روش ها: روش انجام شدن این پژوهش به گونه ای است که ابتدا مجموعه داده اولیه، شامل باندهای هدف تصاویر سنتینل 1 و سنتینل 2، مدل رقومی سطح زمین ALOS و شاخص های NDVI، BSI، SAVI و توان بازپراکنش کل (TSP) آماده سازی شد. در مرحله دوم، با اتخاذ دو رویکرد پیکسل پایه و شیء گرا و الگوریتم جنگل تصادفی، کاربری و پوشش زمین طبقه بندی شد و نتایج حاصل از آنها، برای تبیین بهترین رویکرد ازنظر دقت کلاس های گوناگون، مقایسه شد. در رویکرد شیء گرا، معیارهای بافتی با اعمال ماتریس وقوع توأم گام های خاکستری (GLCM) روی مجموعه داده اولیه استخراج شد و با توجه به افزایش تعداد باندها روش تحلیل مؤلفه های اصلی (PCA)، برای کاهش ابعاد تصویر، به کار رفت. در گام آخر، با ترکیب لایه PC1 و لایه قطعه بندی حاصل از الگوریتم خوشه بندی ساده غیرتکراری (SNIC)، الگوریتم جنگل تصادفی به منظور تهیه نقشه های کاربری و پوشش زمین محدوده مطالعاتی در نظر گرفته شد. نتایج و بحث: تحلیل معیارهای ارزیابی صحت نشان داد که رویکرد شیء گرا با صحت کلی و ضریب کاپای معادل 86/40% و 0/8307، در مقایسه با رویکرد پیکسل پایه با صحت کلی و ضریب کاپای 82/73% و 0/8028، نتایج بهتری را در طبقه بندی کاربری های متفاوت اراضی منطقه مورد مطالعه داشته است. نتایج معیارهای ارزیابی صحت نشان داد صحت تولیدکننده اغلب کلاس های کاربری، به جز ذرت، سبزیجات آبی پاییزه و گندم و جو آبی، در رویکرد شیء گرا بیشتر از روش پیکسل پایه است و دقت طبقه بندی آنها بالاتر از 90% بوده است. علاوه براین، کاربری های/ پوشش های پهنه آبی، ساخته شده، ذرت و چغندرقند بیشترین صحت کاربر را در نقشه کاربری و پوشش زمین شیء گرا به خود اختصاص داده اند. نتیجه گیری: یافته های تحقیق نشان دادند که تعیین مناسب اندازه سوپرپیکسل الگوریتم خوشه بندی SNIC و به کارگیری معیارهای بافتی GLCM به طور مؤثری عملکرد رویکرد پیشنهادی را در طبقه بندی کاربری و پوشش زمین، بهبود می بخشد.
۴.

بازیابی بخارآب نزدیک به سطح جَو با دقت و توان تفکیک مکانی ارتقایافته ازطریق تلفیق داده های چندسنجنده ای و مشاهدات زمینی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بخارآب نزدیک به سطح داده چندسنجنده ای اریبی سنجنده مادیس سنجنده AIRS

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
سابقه و هدف: بخارآب موجود در جَو پارامتری محوری در مدل سازی تعادل انرژی در سطح زمین است و در متعادل نگاه داشتن دمای جَوّ کره زمین نقش مهمی دارد. بازیابی این پارامتر، به منزله تأثیرگذارترین عامل جَوّی در رادیانس دریافتی سنجنده، از اهمیت بسزایی برخوردار است. ازآنجاکه محتوای بخارآب جَو در لایه نزدیک به سطح بیشتر و تغییرات زمانی و مکانی آن شدیدتر است، اندازه گیری ایستگاه های هواشناسی زمینی به رغم دقت بالا، به دلیل محدودیت های زمانی و مکانی و اندازه گیری نقطه ای، قابلیت تعمیم پذیری ندارند. ازاین رو ارائه روش های ماهواره محور کاربردی به منظور بازیابی دقیق و مداوم آن، با توزیع مکانی مناسب ضروری به نظر می رسد. هدف این تحقیق بیان چهار روش نوآورانه و دقیق برای برآورد نسبت اختلاط بخارآب نزدیک به سطح جَوّ استان اصفهان در سال 1399، با توان تفکیک 1 کیلومتر، ازطریق تلفیق داده های ایستگاه های هواشناسی، داده های سنجنده و درنَهایت، اعتبارسنجی و مقایسه عملکرد آنهاست. بدین منظور تصحیح خطای اریبی داده های بخارآب سنجنده طی مرحله هم مقیاس سازی و تصحیح خطای درون یابی مشاهدات ایستگاه های زمینی در دستورکار قرار گرفت. مواد و روش ها: سنجنده های گوناگون قابلیت اندازه گیری بخارآب، با توان تفکیک های مکانی و حساسیت های متفاوت به این پارامتر را دارند. ازاین رو مطرح کردن روش هایی، مبتنی بر استفاده و تلفیق هم زمان داده های سنجنده ها و مشاهدات ایستگاه های زمینی، به منظور ارتقای هم زمان توان تفکیک مکانی (یک کیلومتر) و دقت بازیابی بخارآب نزدیک به سطح جَو ضروری است. در نخستین روش به کاررفته در این تحقیق، با استفاده از باندهای جذب و غیرجذب بخارآب سنجنده مادیس (MODIS) طی روش نسبت باندی و با استفاده از مشاهدات زمینی، بخارآب نزدیک به سطح بازیابی می شود. در روش دوم، ابتدا مشاهدات بخارآب نزدیک به سطح ایستگاه های زمینی، با روش درون یابی معکوس فاصله، به داده های بخارآب سطحی یک کیلومتری تبدیل می شود. سپس طی مراحل روش پیشنهادی و با استفاده از مقادیر نسبت اختلاط بخارآب برآوردشده با روش اول، خطای درون یابی در هر پیکسل حذف می شود. در روش سوم، با تلفیق داده های مادیس طی عملیاتی شبیه مراحل روش دوم، توان تفکیک محصول بخارآب سنجنده AIRS به یک کیلومتر ارتقا داده می شود؛ با این تفاوت که به جای مشاهدات ایستگاه های هواشناسی زمینی، از محصول سنجنده AIRS استفاده می شود. ازآنجاکه محصول نسبت اختلاط بخارآب نزدیک به سطح سنجنده AIRS دارای خطا و اریبی است، ابتدا باید با اعتبارسنجی محصولات این سنجنده، خطای اریبی محصول بخارآب نزدیک به سطح سنجنده AIRS، طی مرحله هم مقیاس سازی، حذف شود. برآورد بخارآب نزدیک به سطح جَو با استفاده از محصول بخارآب جَوّ ستونی سنجنده مادیس آخرین روش به کار رفته است. البته به دلیل تفاوت محتوایی، لازم است دو مجموعه داده هم واحد شوند و با روشی معادل سازی شوند. نتایج و بحث: به منظور مدل سازی و اعتبارسنجی برآورد بخارآب نزدیک به سطح جَو در توان تفکیک یک کیلومتر با استفاده از چهار روش اشاره شده، 3/66% داده ها به صورت تصادفی برای آموزش و 33% مابقی برای ارزیابی دقت و اعتبارسنجی نتایج به کار رفته است. درنَهایت نیز، نتایج اجرای روش ها با یکدیگر مقایسه شد. در این تحقیق، ضریب تعیین (R2) و جذر میانگین مربعات خطاها (RMSE) ملاک ارزیابی دقت و عملکرد مدل سازی قرار گرفته اند. نتایج اعتبارسنجی نشان می دهد روش دوم که مبتنی بر استفاده از تعمیم مشاهدات دقیق بخارآب نزدیک به سطح ایستگاه های زمینی و حذف خطای درون یابی آنها، طی تلفیق با مقادیر بخارآب بازیابی شده از سنجنده مادیس ازطریق روش نسبت باندی است، بهترین عملکرد (R2=0.55، RMSE=1.05 Gr/Kr) را در تخمین بخارآب نزدیک به سطح جو را دارد. نتیجه گیری: روش دوم، با توجه به عملکرد بهتر در بازیابی نسبت اختلاط بخارآب نزدیک به سطح جَو با دقت بالا و توان تفکیک یک کیلومتر و با هدف استفاده از قابلیت محصولات و داده های ماهواره محور، تلفیق آنها با یکدیگر و همچنین با مشاهدات زمینی، توصیه می شود.
۵.

تحلیل زمانی- مکانی تصادفات عابران پیاده با استفاده از سری زمانی و شاخص Moran’s I تفاضلی (مطالعه موردی: شهر مشهد)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تحلیل زمانی مکانی سری زمانی تحلیل یکنواختی شاخص Moran’s I تفاضلی تصادفات عابران پیاده

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
سابقه و هدف: عابران پیاده، به دلیل نبودِ تدابیر حفاظتی، آسیب پذیرترین کاربران راه شناخته می شوند و ایمنی آنها در حوزه برنامه ریزی حمل ونقل بسیار حیاتی است. مطالعات متعددی که تصادفات عابران پیاده را تحلیل کرده اند معمولاً بر مدل های پیش بینی، عوامل خطر و الگوهای مکانی زمانی متمرکز بوده اند. این تحلیل ها بر اهمیت شناسایی مناطق پرخطر و اجرای اقدامات پیشگیرانه تأکید می کنند. تأثیرات خودهمبستگی مکانی و زمانی در درک الگوهای تصادفات بسیار مهم است و شاخص هایی مانند Moran’s I و تخمین تراکم کرنل، در این حوزه، کاربرد گسترده ای دارند. با توجه به موارد یادشده، مطالعه پیش رو تأثیر رشد سریع اجتماعی اقتصادی در تصادفات ترافیکی و نیاز به مداخلات ایمنی هدفمند برای حفاظت از عابران پیاده را، در شهر مشهد در ایران، به صورت برجسته و مؤثر نشان می دهد. مواد و روش ها: در این پژوهش، با استفاده از تحلیل اکتشافی سری زمانی، تصادفات عابران پیاده به صورت ماهیانه و ساعتی در بازه ای پنج ساله (1394-1398) بررسی شده است. در گام بعد، وجود خودهمبستگی زمانی و همچنین روند در وقوع تصادفات عابران پیاده مورد بحث قرار گرفته و سپس، با استفاده از تحلیل یکنواختی سری زمانی، زمان تغییر در وقوع تصادفات بررسی شده است. درنَهایت، به منظور استخراج الگوهای مکانی تغییرات تصادفات عابران پیاده در بازه زمانی مطالعاتی، از شاخص Moran’s I تفاضلی استفاده شده است. نتایج و بحث: با استفاده از تحلیل های سری زمانی، الگوی زمانی و وجود خودهمبستگی زمانی معنادار در مقادیر ماهیانه و ساعتی تصادفات عابران پیاده تأیید شد. نتایج آزمون من کندال با لحاظ کردن تأثیرات خودهمبستگی نیز وجود روند معنادار در تصادفات عابران پیاده را به ازای ماه های گوناگون سال و ساعات متفاوت شبانه روز تأیید کرد. همچنین، ازطریق تحلیل یکنواختی سری زمانی با استفاده از آزمون بیشاند، زمان وقوع تغییرات ناگهانی تصادفات در ساعت های متفاوت شبانه روز (7:00-8:00 صبح) و همچنین ماه های گوناگون سال (تیر و شهریور) شناسایی شد. نتایج استفاده از شاخص Moran’s I تفاضلی نیز همبستگی مکانی معنادار در تغییرات تصادفات عابران پیاده، بین دو بازه زمانی آغاز (سال 1394) و پایان زمان تحلیل (سال 1398) را نشان داد و نواحی دارای تمرکز تغییرات معنادار شناسایی شد. نتیجه گیری: در این پژوهش، عابران پیاده به منزله یکی از آسیب پذیرترین کاربران راه مورد توجه قرار گرفته اند و تغییرات وقوع تصادفات مرتبط با آنها در بازه زمانی پنج ساله ای (1394-1398)، با استفاده از تحلیل های سری زمانی و همچنین تحلیل زمانی مکانی Moran’s I تفاضلی، در کلان شهر مشهد ارزیابی شده است. خودهمبستگی زمانی معنادار در مقیاس ماهیانه و ساعتی نیز در وقوع تصادفات به تأیید رسید و وقوع تصادفات عابران پیاده، در ماه های متفاوت سال و همچنین ساعات متفاوت شبانه روز، نیز روند مشخصی را نشان داد و درنَهایت، زمان وقوع تغییرات ماهیانه و ساعتی شناسایی شد. نتایج بیانگر خودهمبستگی زمانی مکانی معنادار در تغییر تصادفات، در حد فاصل برش زمانی ابتدا (سال 1394) و انتهای زمان تحلیل (1398)، به ازای ماه های متفات بود. درعین حال همبستگی زمانی مکانی معناداری، به ازای ساعات متفاوت، وجود ندارد و ازاین رو کوچک کردن مقیاس زمانی به از دست رفتن همبستگی های مکانی نیز منجر می شود. نتایج این پژوهش می تواند، در قالب گام نخست شناسایی و تحلیل الگوهای زمانی مکانی، تغییرات تصادفات عابران پیاده را شناسایی و کمک کند متخصصان حوزه ایمنی و تصمیم گیرندگان، با بازرسی های محلی، نواحی استخراج شده را ارزیابی نمایند.
۶.

داده گواری سنجش از دور به روش جایگزینی در شبیه سازی عملکرد ذرت علوفه ای با استفاده از مدل AquaCrop(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: روش جایگزینی سنجش از دور مدل شبیه سازی رشد گیاه کسر پوشش گیاهی AquaCrop

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
مقدمه: برآورد به موقع و دقیق عملکرد محصول قبل از برداشت و پیش بینی آن ازطریق مدل های رشد محصول، برای دستیابی به برنامه ریزی عملیات زراعی و حفظ و توسعه عملکرد در مقیاس منطقه ای، از اهمیت بسیاری برخوردار است. مدل سازی تغییرات پویا، در هنگام رشد محصول، کمک شایان توجهی به محققان می کند تا استراتژی های مدیریت محصول را به منظور افزایش عملکرد آن، برنامه ریزی کنند. این مدل ها حاوی پارامترهای متعددی است که باید، با توجه به ویژگی های منطقه مورد مطالعه، کالیبره شوند؛ ازطرفی، وجود نداشتن مؤلفه مکان در این مدل ها و نیز عدم قطعیت درمورد مقادیر پارامترهای آنها منجر به بروز خطا در خروجی های برآوردشده می شود. اسیمیلیت داده های سنجش از دور می تواند برای حل این مشکل و ارزیابی تغییرپذیری مکانی در اراضی، به ویژه در مقیاس منطقه ای، مفید باشد. سنجش از دور را می توان برای تخمین و برآورد مقادیر پارامترهای ورودی مدل های رشد محصول، مانند شاخص سطح برگ، سطح پوشش، بیومس، ویژگی های خاک به کار برد. مواد و روشها: برای دستیابی به عملکرد دقیق محصول می توان از مدل های رشد گیاه استفاده کرد. برای تخمین پارامترهای مدل شبیه سازی گیاه زراعی AquaCrop و تنظیم مدل در سطح منطقه، اطلاعات مورد نیاز مدل در مراحل متفاوت رشد گیاه و قبل از کشت، در مزارع ذرت علوفه ای و در مقیاس منطقه ای، اندازه گیری و نمونه برداری شد. به منظور کالیبره کردن مدل شبیه سازی AquaCrop ازطریق داده گواری سنجش از دور (RS)، متغیر بیوفیزیکی fCover از داده های RS مبتنی بر پیکسل، با توسعه الگوریتم GPR-PSO، استخراج شد. علاوه براین، با هدف ساده سازی مدل AquaCrop و شناسایی پارامترهای تأثیرگذارتر، الگوریتم های تحلیل حساسیت ترکیبی Morris و EFAST به کار رفت. درنَهایت، ازطریق داده گواری متغیر بیوفیزیکی استخراج شده با RS در مدل AquaCrop، این پارامترهای مؤثرتر با استفاده از روش جایگزینی تخمین زده شد و نتایج با نتایج حاصل از شرایط استفاده نکردن از داده های RS مقایسه شد. به منظور کالیبره کردن مدل AquaCrop، نمونه برداری مزرعه ای از خاک (قبل از کاشت) و محصول در فصل رشد ذرت علوفه ای، عکس برداری رقومی نیم کروی (DHP) و همچنین اندازه گیری به روش تخریبی LAI برای مقایسه، در مزارع شهرستان قلعه نو واقع در جنوب تهران، در تابستان ۱۳۹۸ انجام شد. نتایج و بحث: نتایج داده گواری RS در مدل AquaCrop در مقایسه با به کار نبردن داده های RS در این مدل نشان داد که در نظر گرفتن داده گواری RS منجر به افزایش دقت تنظیم کردن مدل می شود. نتایج نشان داد که داده گواری سنجش از دور در مدل به برآورد دقت متغیر خروجی عملکرد در آماره R2، به میزان ۸۹/۰ و ۸۸/۰، در واسنجی و صحت سنجی منجر شده است. داده گواری سنجش از دور، در قیاس با اعمال نشدن آن، به بهبود دقت و افزایش R2 به میزان ۱۴/۰ و ۱۵/۰ و نیز کاهش در آماره RRMSE به میزان ۱۲/۴ و ۱۷/۵%، در آماره RMSE به میزان ۵/۲ و ۴/۲ ton/ha، به ترتیب در واسنجی و صحت سنجی، انجامیده است. بنابراین، در مقایسه داده گواری RS و بدون داده گواری، بهبود فرایند تنظیم مدل با داده گواری RS همراه است. نتیجه گیری: در این تحقیق، مقادیر برآوردشده پارامتر بیوفیزیکی fCover، به دست آمده ازطریق سنجش از دور به منزله متغیر کنترل مشاهداتی ورودی برای مدل AquaCrop استفاده شد تا پارامترهای تأثیرگذار شناسایی شده آن (ازطریق تحلیل حساسیت) تنظیم شود. نتایج نشان می دهد که داده گواری سنجش از دور، با استفاده از روش جایگزینی برای تنظیم مدل مدنظر، توانسته است بر میزان دقت برآوردشده بیفزاید. علاوه براین، توافق بین مقادیر پیش بینی شده و اندازه گیری شده بیشتر از زمانی است که سنجش از دور اعمال نمی شود. بنابراین نتایج تحقیق نشان می دهد که داده گواری سنجش از دور در مدل AquaCrop می تواند عملکردی موفق تر از شرایط اعمال نشدن سنجش از دور داشته باشد و نتایج با دقت بیشتری به دست دهد. همچنین، در مقیاس منطقه ای، می توان با استفاده از سنجش از دور و قابلیت آن در برآورد پارامتر بیوفیزیکی در مقیاس وسیع، با صرف وقت و هزینه کمتر و به روزتر، مدل های رشد محصول را برای منطقه مورد نظر کالیبره کرد.
۷.

رویکرد ترکیبی به سیستم اطلاعات مکانی برای اولویت بندی توسعه خطوط اتوبوس سریع السیر با استفاده از مدل آنتروپی شانون و کوپراس با تأکید بر مفاهیم عدالت فضایی تا افق 1410 (نمونه موردی: شهر اصفهان)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: عدالت فضایی حمل و نقل عمومی آنتروپی شانون کوپراس منحنی لورنز ضریب جینی

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
سابقه و هدف: رشد سریع جمعیت شهری در چند دهه اخیر و نارسایی مدیریت شهری در پاسخگویی به نیاز شهروندان یکپارچگی شهری را دستخوش تغییر کرده است؛ برای رفع چالش ها و مشکلات ناشی از ازهم گسیختگی شهر، مفهوم «عدالت فضایی» با هدف کاهش نابرابری های فضایی، وارد مباحث برنامه ریزی شهری شد. درواقع، بین نابرابری فضایی، توزیع ناعادلانه خدمات و مشکلات زیست محیطی و کالبدی در سطح شهر، همواره رابطه ای چرخشی وجود دارد و همین به اهمیت یافتن موضوعی همچون توزیع خدمات در سطح شهر، به ویژه در کشورهای درحال توسعه، منجر شده است. در ایران نیز، به تبع تحولات جهانی و با توجه به سیاست های کلان کشور و شعار عدالت، به منزله اصل محوری هرگونه توسعه، بحث عدالت فضایی در حوزه مطالعات شهری مورد توجه قرارگرفته است. با توجه به اینکه حمل و نقل عمومی و رفت وآمد آسان در شهر از جنبه های اصلی حیات شهری است، برخورداری از سیستم حمل ونقل کامل، منظم و گسترده از نیازهای اولیه شهر محسوب می شود. به عبارت دیگر، توسعه و ایجاد حمل و نقل عمومی منطبق بر معیارهای عدالت فضایی می تواند، علاوه بر بهبود و اصلاح سیستم حمل و نقل عمومی، نقش بسزایی در دسترسی مناسب شهروندان به مراکز خدماتی شهر داشته باشد؛ چراکه ضمن نیاز نداشتن به توسعه مراکز خدماتی در کل شهر، امکان دسترسی آسان و سریع شهروندان را به این مراکز فراهم می کند. در این راستا، توزیع و پراکنش خدمات حمل ونقل عمومی ازجمله موضوعاتی است که در حوزه عدالت فضایی بسیار مورد توجه قرار گرفته است. به دیگرسخن، به دلیل مشکلات متعدد، ازجمله نبودِ زمین مناسب و کافی در سطح شهر، کمبود اعتبارات مالی در ایجاد مراکز جدید خدماتی و برگشت نداشتن هزینه های تأسیس، نبودِ زیرساخت های تأسیساتی و مسائلی از این دست، احداث مراکز خدماتی در تمامی سطح شهر منطقی نیست. از سوی دیگر وجود شبکه حمل ونقل ناکارآمد و دسترسی نداشتن مناسب شهروندان به خدمات، علاوه بر از بین بردن عدالت فضایی، به نارسایی مدیریت خدمات شهری منجر می شود. در این راستا، توسعه زیرساخت های مناسب در حوزه حمل ونقل عمومی یکی از راهکارهای اساسی است. مواد و روش ها: شهر اصفهان در جایگاه سومین کلان شهر ایران، با افزایش تمرکز جمعیت و توسعه فیزیکی در سال های اخیر، با مشکلات متعددی مانند افزایش سفرهای درون شهری، کاهش کیفیت زندگی، افزایش آلودگی های زیست محیطی و بر هم خوردن عدالت فضایی مواجه شده است. ارزیابی وضعیت حمل ونقل عمومی، به منزله عنصر ساختاردهنده شکل و ماهیت کالبدی، اجتماعی و فضایی شهر از مواردی است که می تواند در حل این مسائل مؤثر باشد. ازدیگرسو نتایج مطالعات جامع حمل ونقل شهر اصفهان حاکی از آن است که به منظور دسترسی متوازن شهروندان به خطوط حمل ونقل عمومی، ایجاد 21 خط اتوبوس سریع السیر پیشنهاد شده است. بنابراین هدف این مطالعه اولویت بندی توسعه خطوط اتوبوس سریع السیر، با ترکیب مدل آنتروپی شانون و کوپراس، با تأکید بر مفاهیم عدالت فضایی تا افق 1410 است. وجه تمایز تحقیق حاضر تلفیق سیستم اطلاعات جغرافیایی با شاخص های عدالت مکانی، به منظور اولویت بندی خطوط اتوبوس سریع السیر با هدف اجراست. نتایج و بحث: ازاین رو، در گام نخست، وضعیت خطوط اتوبوس سریع السیر در شاخص های نفوذپذیری، مجاورت و دسترسی پذیری محاسبه شد و ضریب جینی و منحنی لورنز وضعیت فعلی به دست آمد. در گام دوم، با محاسبه ضریب جینی هریک از خطوط پیشنهادی، به صورت جداگانه، و مقایسه با مقدار فعلی، میزان اثرگذاری خطوط پیشنهادی ارزیابی شد. سپس اهمیت معیارهای مورد نظر، به روش آنتروپی شانون، وزن دهی شد که به ترتیب، سه معیار مجاورت، نفوذپذیری و دسترسی اولویت 1 تا 3 به منظور وزن دهی شاخص ها مشخص گردید. در پایان، با استفاده از روش کوپراس، 21 خط اتوبوس پیشنهادی با هدف توسعه تا افق 1410، اولویت بندی شدند. نتیجه گیری: نتایج این تحقیق نشان داد، اگرچه خط پایانه آیت الله غفاری به انتهای شیخ صدوق با طول 9/14 کیلومتر، درزمره خطوط با طول متوسط است، با در نظر گرفتن سایر معیارها باید اجرای آن را در اولویت قرار داد. کلیدواژه: عدالت فضایی، حمل و نقل عمومی، آنتروپی شانون، کوپراس، منحنی لورنز.
۸.

شناسایی مناطق مستعد آتش سوزی در پوشش گیاهی استان لرستان با استفاده از تصاویر فروسرخ(مقاله علمی وزارت علوم)

کلیدواژه‌ها: آتش سوزی پوشش گیاهی خشکسالی بارش تصاویر فروسرخ استان لرستان

حوزه‌های تخصصی:
تعداد بازدید : 0 تعداد دانلود : 0
سابقه و هدف: در هر منطقه ای شرایط خشکسالی، از متوسط تا شدید و با مدت زمان متفاوت، متغیر است که این مسئله نظارت مداوم و عملیاتی را می طلبد. هرچه خشکسالی در مدت زمانی طولانی تر رخ دهد، تأثیرات آن در پوشش گیاهی و منابع آبی بیشتر است و خشکسالی تشدید می شود؛ درنتیجه، ممکن است خدمات رسانی به انسان ها محدود شود و دستگاه های طبیعی تغییر یابد. آثار خشکسالی شامل تخریب زیستگاه های حیات وحش و کاهش کیفیت آب، کاهش دسترسی به منابع آب و مواردی دیگر می شود و درنتیجه آن، اختلالاتی مانند حوادث آتش سوزی و دیگر حوادث طبیعی افزایش می یابد. پوشش گیاهی در هر منطقه، به ویژه در مناطق گوناگون استان لرستان، به دلیل کمبود بارش و خشکی محیط، هرساله درمعرض خطر وقوع آتش سوزی های متعدد قرار دارد. به همین دلیل، موضوع آشکار سازی و مشخص کردن مناطق مستعد آتش سوزی در رابطه با مهم ترین عنصر اقلیمی (بارش) انتخاب و انجام شده است که می تواند اقدامات مناسب و پیشگیرانه برای حفاظت از مناطق پوشش گیاهی را تسهیل کند. در این تحقیق، سعی شده است از روش ترکیبی استفاده شود. مواد و روش ها: در این مطالعه، تلاش شده است با استفاده از تصاویر فروسرخ سنجنده Suomi NPP و بهره گیری از شاخص های NDVI، VCI و TCI وضعیت خشکسالی پوشش گیاهی در استان لرستان بررسی شود. دوره مورد مطالعه 2013-2021، از اول آوریل تا انتهای جولای (هفته 13 تا 26 میلادی)، به صورت میانگین هفتگی است. میانگین ماهیانه شاخص استاندارد بارش (SPI) با استفاده از داده های بارش ماهیانه ایستگاه های هواشناسی الیگودرز، دورود، خرم آباد، بروجرد، نورآباد، کوهدشت و ازنا مشخص شده است تا وضعیت بارش به خوبی تحلیل شود و ماه های خشک و مرطوب از یکدیگر تفکیک شود. سپس ضریب همبستگی شاخص SPI با هریک از شاخص های پوشش گیاهی (NDVI)، VCI و TCI محاسبه شده است. نتایج و بحث: براساس داده های ثبت شده بارش در ایستگاه های هواشناسی استان لرستان، می توان گفت که در فصل تابستان، (ژوئیه، اوت و سپتامبر) در محدوده مطالعاتی بارش رخ نمی دهد و فقط در فصل های پاییز، زمستان و بهار شاهد بارش هستیم. بنابراین سال آبی در استان لرستان تقریباً از دهه سوم سپتامبر آغاز و تا دهه دوم و سوم ژوئن هر سال ادامه دارد. این نکته نشان دهنده خشکی بسیار زیاد هوا و کمبود رطوبت است. خشکی هوا یا کمبود رطوبت و افزایش دما شرایط لازم را برای ایجاد آتش سوزی در استان، فراهم می کند. در این نوشتار، در فصل تابستان، استان لرستان یک فصل خشک را می گذارند و ماه اوت خشک ترین ماه سال است. نتیجه گیری: این پژوهش نشان داد که همواره پوشش گیاهی در استان لرستان با خطر وقوع آتش سوزی روبه روست و این حوادث، طی سال هایی که کمبود بارش وجود داشته است، در ماه های گوناگون بسیار زیاد است. اثبات شد که چنانچه در ماه های اول سال آبی کمبود بارش وجود داشته باشد، خطر آتش سوزی پوشش گیاهی، حتی در ماه های سرد سال، وجود دارد. این خطر در ماه های گرم سال افزایش شایان توجهی می یابد و این مسئله در سال 2021 رخ داده است. محاسبات SPI نشان داد ماه های ژوئیه، اوت و سپتامبر در استان لرستان شاخص بارندگی منفی است. نتایج نشان می دهد که بهترین شاخص مبتنی بر تصاویر ماهواره ای، به منظور پایش خشکسالی پوشش گیاهی و خطر آتش سوزی در منطقه مورد مطالعه، TCI است. در سال های 2013 و 2015 بیشترین شدت خطر آتش سوزی در پوشش گیاهی، در مناطق غربی و مرکزی استان لرستان، وجود داشته است. در سال 2021، بیشترین شدت خطر آتش سوزی در پوشش گیاهی، در منطقه مورد مطالعه، به وقوع پیوسته است. به دلیل تغییرات زیاد و پراکندگی میزان شاخص های پوشش گیاهی مؤثر در وقوع آتش سوزی ازلحاظ زمانی و مکانی، همبستگی ناپارامتریک اسپیرمن به کار رفته است.
۹.

جایابی تونل انتقال آب رشته کوه هزارمسجد با واکاوی سلسله مراتبی و آنتروپی شانون(مقاله علمی وزارت علوم)

کلیدواژه‌ها: مخاطرات وزن دهی ارجحیت حفاری محل تحویل آب قضاوت مهندسی

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۱
سابقه و هدف: در سال های اخیر، حفر تونل های انتقال آب با مخاطرات گوناگونی همانند پتانسیل مچاله شوندگی، مخاطرات هیدروژئولوژیکی، تأثیرات زیست محیطی، مخاطرات وجود گاز و تحلیل حساسیت هزینه های ساخت روبه رو بوده که اهمیت جایابی صحیح این سازه ها را دوچندان کرده است. اما تعیین محل حفر تونل، با استفاده از روش های نوین وزن دهی به معیارهای اثرگذار و پهنه بندی در سیستم اطلاعات جغرافیایی، مغفول مانده است. مواد و روش ها: در این مطالعه، با تلفیق سیستم اطلاعات جغرافیایی، تحلیل سلسله مراتبی و آنتروپی شانون، به جایابی تونل انتقال آب هزارمسجد که بخشی از پروژه انتقال آب از ارتفاعات هزارمسجد به شهر مشهد را تشکیل می دهد، پرداخته شده است. بر این اساس، مؤلفه های گوناگونی شامل پنج بعد مخاطرات اجتماعی، زمین شناسی ساختاری، هیدروژئولوژی، توپوگرافی و بعد اقتصادی در نظر گرفته شده است. در گام اول، دو معیار فاصله از روستاها و فاصله از منابع آبی، بدون توجه به آب دهی شان، به منزله معیارهای درگیر با بعد اجتماعی در نظر گرفته شدند. بر این اساس، حفر تونل در فاصله های دورتر از این دو معیار پیشنهاد می شود. بعد دوم مطالعات به زمین شناسی و زمین ساخت تعلق گرفته است. بر این مبنا، ساخت چنین سازه هایی در تراکم بالای گسل ها مخاطراتی را درپِی خواهد داشت و پیشنهاد نمی شود. مطالعات هیدروژئولوژی با عنوان بعد سوم به لحاظ عوامل تأثیرگذار، ورود آب به تونل، و یا تأثیرپذیر، خشک شدن منابع آبی پیرامون حفاری تونل حائز اهمیت است. ازاین رو، در این مطالعه، از حوضه آبگیر چشمه های پرآب محدوده مطالعاتی با عنوان معیار هیدروژئولوژی یاد شده است. در بعد توپوگرافی، از نقشه توپوگرافی محدوده مطالعاتی به منظور استحصال نقشه ضخامت روباره تونل استفاده شد. با توجه به این معیار، حفاری در ضخامت کمتر روباره شرایط بهینه تری فراهم می آورد. درنَهایت، گزینه حفر تونل در نقاط نزدیک به محل تحویل آب، در تصفیه خانه شماره 3 مشهد چرمشهر به منزله معیار اقتصادی در نظر گرفته شد. بنابراین معیاری با عنوان فاصله خروجی تونل تا محل تحویل آب با عنوان بعد اقتصادی طرح مطرح شده است. نقشه موضوعی هریک از معیارهای بیان شده در محیط ArcMap تهیه و طبقه بندی شد. طبقات واقع در هر معیار، با استفاده از فرایند تحلیل سلسله مراتبی AHP، امتیازدهی شد. درنَهایت، برای وزن دهی به معیارهای مؤثر در جایابی تونل، از روش آنتروپی شانون استفاده شد. اولویت بندی معیارهای مؤثر در جایابی تونل انتقال آب هزارمسجد نشان می دهد که پارامتری مانند فاصله از چشمه ها مهم تر از سایر معیارهاست. درواقع، اگرچه فاصله از روستا به منزله عامل مهم در قیاس با سایر معیارها محسوب نمی شود، وجود چشمه به علت اهمیت معیشتی برای ساکنان، شرایط را بغرنج خواهد کرد و این بدان معنی است که دوری یا نزدیکی به روستا نمی تواند عامل مستقلی برای جایابی حفر تونل در نظر گرفته شود. در رده دوم، معیار فاصله از گسل به سبب اثر مستقیم در پایداری سازه، اهمیت ویژه ای را به خود اختصاص داده است. سایر معیارها در شرایط حد واسط اهمیت قرار دارند. درنَهایت، با تلفیق نقشه های تهیه شده، پهنه بندی مناطق مناسب حفر تونل به علاوه سه اولویت اصلی محور تونل پیشنهادی، ازطریق قضاوت مهندسی مطرح شده است. نتایج و بحث: نتایج نشان می دهد که بخش شمال غرب محدوده مطالعاتی برای حفاری مناسب نیست و مخاطراتی درپِی خواهد داشت. بنابراین ارجحیت حفاری به بخش میانی و شرقی محدوده مطالعاتی اختصاص می یابد. به طور دقیق تر، اولویت حفاری به مناطق میانی اختصاص یافته است زیرا نقاط نزدیک تر به محل تحویل آب به شهر مشهد، در غرب محدوده مطالعاتی، نزدیک ترند. براساس نتایج، بهترین گزینه انتقال آب از یال شمالی به جنوبی کوه های هزارمسجد، احداث تونلی به طول 8732 متر در حوالی روستای چنارسوخته و مسیری نزدیک تر به محل تحویل آب است. شایان ذکر است که پس از جایابی مسیر حفر تونل تا پیش از حفاری آن، باید مطالعات جامع هیدروژئولوژیکی، زمین شناختی مهندسی و زمین شناختی ازطریق بازدیدهای صحرایی، حفاری گمانه در مسیر و آزمایشات مربوط به آن انجام شود. نتیجه گیری: این مطالعه نشان می دهد که استفاده از رویکردهای چندمعیاره و تکنولوژی های پیشرفته پهنه بندی می تواند به بهبود فرایند تصمیم گیری در پروژه های بزرگ زیربنایی کمک کند.

آرشیو

آرشیو شماره‌ها:
۶۴