آرشیو

آرشیو شماره‌ها:
۵۲

چکیده

این پژوهش باهدف مدل سازی پیشران ها و پیامدهای تحول دیجیتال در اکوسیستم کسب وکار صنعت فولاد کشور ایران انجام شد. پژوهش حاضر ازنظر هدف یک تحقیق کاربردی-توسعه ای است و ازنظر شیوه گردآوری داده ها نیز یک تحقیق توصیفی-پیمایشی می باشد. در راستای هدف از طرح تحقیق آمیخته اکتشافی استفاده شد. جامعه مشارکت کنندگان بخش کیفی شامل اساتید مدیریت و مدیران صنعت فولاد کشور است. با روش نمونه گیری نظری پس از 20 مصاحبه اشباع نظری حاصل شد. در بخش کمی نیز با روش تحلیل توان کوهن نمونه ای به حجم 140 نفر از مدیران و کارشناسان صنعت فولاد کشور انتخاب شدند. ابزار گردآوری داده ها، مصاحبه نیمه ساختاریافته و پرسشنامه محقق ساخته بود. روایی بخش کیفی بر اساس اعتبارپذیری، انتقال پذیری، تأییدپذیری و اطمینان پذیری بررسی شد و برای سنجش پایایی بخش کیفی ضریب هولستی 707/0 و کاپای کوهن 658/0 برآورد گردید که مطلوب است. پرسشنامه با برآورد نسبت روایی محتوایی، روایی همگرا و روایی واگرا اعتبارسنجی شد. همچنین آلفای کرونباخ، ضریب رو و پایایی ترکیبی تمامی سازه ها بالای 7/0 برآورد شد. برای تجزیه وتحلیل داده ها از روش تحلیل کیفی مضمون، روش مدل سازی ساختاری-تفسیری و روش حداقل مربعات جزئی استفاده شد. یافته های پژوهش نشان داد عوامل اکوسیستم کسب وکار، عوامل مدیریتی، بسترهای سخت افزاری و نرم افزاری عوامل پیشران هستند که بر استراتژی تحول دیجیتال تأثیر دارند. استراتژی تحول دیجیتال نیز بر تحول دیجیتال صنعت فولاد تأثیر دارد و تحول دیجیتال نیز به نوبه خود بر نوآوری دیجیتال و ارتباطات دیجیتال تأثیر دارد و عملکرد نوآورانه، عملکرد اجتماعی و عملکرد بازاریابی را تحت تأثیر قرار داده و درنهایت دستیابی به عملکرد مالی میسر می شود. کلیدواژه ها: تحول دیجیتال، اکوسیستم کسب وکار، صنعت فولاد کشور ایران.

Modeling the drivers and consequences of digital transformation in the country's steel industry business ecosystem Iran

This research was conducted with the aim of modeling the drivers and consequences of digital transformation in the country's steel industry business ecosystem Iran. The present study is an applied-developmental research in terms of its purpose and a descriptive-survey research in terms of its data collection method. In line with the purpose, an exploratory mixed research design was used. The qualitative section's participant population includes management professors and managers of the country's steel industry. Theoretical saturation was achieved after 20 interviews using the theoretical sampling method. In the quantitative section, a sample of 140 managers and experts of the country's steel industry was selected using the Cohen power analysis method. The data collection tool was a semi-structured interview and a researcher-made questionnaire. The validity of the qualitative section was examined based on reliability, transferability, confirmability, and reliability, and the Holst coefficient was estimated to be 0.707 and Cohen's kappa was 0.658, which is desirable. The questionnaire was validated by estimating the content validity ratio, convergent validity, and divergent validity. Also, Cronbach's alpha, coefficient of resiliency and composite reliability of all constructs were estimated above 0.7. Qualitative content analysis, structural-interpretive modeling and partial least squares methods were used to analyze the data. The research findings showed that business ecosystem factors, management factors, hardware and software platforms are driving factors that affect the digital transformation strategy. The digital transformation strategy also affects the digital transformation of the steel industry, and digital transformation in turn affects digital innovation and digital communications, and affects innovative performance, social performance and marketing performance, and ultimately enables the achievement of financial performance.IntroductionThe steel industry in Iran is known as a vital and mother industry due to its rich mineral resources and potential capacities. This industry has a strategic position in Iran and is considered the second largest non-oil export industry after petrochemicals. Steel is the most practical metal in terms of quality and value, and about 95% of the world's metals are steel and iron. Transformation is a critical factor in the success of steel companies' supply chains, and customer demands in the competitive market of this industry require fundamental changes in current processes. In other words, it can be said that transformation has become a vital issue in the steel industry ecosystem, and accepting and keeping up with changes is a necessary and continuous matter that ultimately ensures the health of this industry. The advancement of digital technology has led to the development of new organizational networks, which are called digital business ecosystems. Digital technology plays a pivotal role in achieving business goals, and its scope and effects are so extensive that it can even transform the nature of an industry as a whole. It is not possible to study business ecosystems without considering digital transformation. In general, it can be said that digital transformation has become the dominant paradigm in the industrial world today. In order to solve the country's major problems by utilizing the capacity of transformative technologies and with the aim of developing the digital economy, the Ministry of Communications and Information Technology has compiled and submitted to the Cabinet the "Digital Transformation Document" since the beginning of 1400. Specifically, in the country's steel industry, embracing digital transformation will bring many benefits, but this transformation requires contexts and platforms that are known as drivers of digital transformation in the steel industry. Creating software platforms that are appropriate for the business ecosystem processes of this steel industry, which has a continuous value chain, along with speed and agility in decision-making for managers, is a very vital issue that will have significant consequences. On the other hand, the digital transformation of the steel industry is inevitable, and from a negative perspective, this issue is also very important. The rapid movement of countries such as China and India towards digital development in the steel industry has greatly affected global markets and, of course, Iran, and can be a warning for the Iranian steel industry. This issue is also very important theoretically, and various studies have been conducted on "digital transformation" and "business ecosystems." However, an independent study that examines the country's steel industry business ecosystem based on digital transformation has not yet been recorded in the country's domestic scientific interventions. In studies that have implicitly addressed this issue, providing an applied model in this area has been neglected. Finally, it should be said that there is no doubt that the gap between the scientific and practical fields in the field of digital transformation in the country is large, therefore, this study attempted to present a model for digital transformation with an applied-developmental approach in the country's steel industry. The present study will answer this key question: what is the model of the drivers and consequences of digital transformation in the country's steel industry business ecosystem? Methodology This research is an applied-developmental research in terms of its purpose, which seeks to model the drivers and consequences of digital transformation in the country's steel industry business ecosystem. It is also considered a descriptive-survey research based on the data collection method. In order to achieve the research objective, a mixed exploratory research design (qualitative-quantitative) was used. The qualitative part's participant population includes management professors and managers of the country's steel industry. Theoretical saturation was achieved after 20 interviews using the theoretical sampling method. In the quantitative part, a sample of 140 managers and experts of the country's steel industry was selected using the Cohen power analysis method. The data collection tool was a semi-structured interview and a researcher-made questionnaire. The validity of the qualitative part was examined based on credibility, transferability, confirmability, and reliability, and the Holst coefficient was estimated to be 0.707 and Cohen's kappa was estimated to be 0.658, which is desirable. The questionnaire was validated by estimating the content validity ratio, convergent validity, and divergent validity. Also, Cronbach's alpha, coefficient of resiliency, and composite reliability of all constructs were estimated to be above 0.7. Thematic analysis method and Maxqda software were used for data analysis in the qualitative part. Structural-interpretive modeling method and MicMac software were used to identify the relationship between constructs. In the quantitative part, partial least squares method and Smart PLS software were used. Results and DiscussionIn the research findings section, the interviews were analyzed using qualitative thematic analysis based on the six-step Atread-Stirling method. In the open coding stage, 514 codes were identified, which were ultimately identified through axial coding as 4 overarching themes, 12 organizing themes, and 72 basic themes. ConclusionThe results showed that business ecosystem factors, management factors, hardware and software platforms are the driving factors that affect the digital transformation strategy. The digital transformation strategy also affects the digital transformation of the steel industry, and digital transformation in turn affects digital innovation and digital communications, and affects innovative performance, social performance, and marketing performance, and ultimately achieves financial performance.Key words: digital transformation, business ecosystem, steel industry of the country Iran.

تبلیغات