تحلیل مقایسه عملکرد شبکه های عصبی مصنوعی و مدل های رگرسیونی پیش بینی رسوب معلق : مطالعه موردی : حوضه آبخیز اسکندری واقع در حوضه آبریز زاینده رود(مقاله علمی وزارت علوم)
حوزه های تخصصی:
یکی از جنبه های حائز اهمیت در مدیریت محیط در ژئومورفولوژی کاربردی حل مشکل برآورد رسوب یک سیستم رودخانه ای میباشد. هدف این مطالعه ارزیابی عملکرد مقایسه ای دونوع شبکه عصبی مصنوعی (مدل ژئومورفولوژیکی و مدل غیر ژئومورفولوژیکی) و دو نوع مدل رگرسیونی (مدل توانی ومدل غیر خطی چندگانه) برای پیش بینی بار رسوب معلق حوضه اسکندری در حوضه آبریز زاینده رود میباشد. مدل ها براساس آمار 104 حادثه وقوع همزمان ثبت شده دبی و رسوب طراحی شده اند. پارامترهای ژئومورفولوژیکی بکار رفته در مدل های مزبور شامل: نسبت ناهمواری، ضریب شکل و تراکم زهکشی می باشند. شبکه های عصبی مصنوعی طراحی شده از نوع انتشار برگشتی چهار لایه است. بهترین نتایج پیش بینی مربوط به روش شبکه عصبی مصنوعی ژئومورفولوژیکی با ضریب تبیین معنی دار 98/0 و جذر میانگین خطای 49/4 در مقایسه با روش شبکه عصبی مصنوعی طراحی شده بر اساس آمار جریان با مقادیر ضریب تبیین 96/0 و خطای35/5 میباشد. عملکرد روش های رگرسیونی با ضریب تبیین 893/0 و خطای66/8 برای روش چند متغیره غیرخطی ومقادیر ضریب تبیین 814/0 و خطای برآورد 05/15 برای روش غیر خطی ساده توانی ضعیف تر از شبکه های عصبی مشاهده گردید. تفاوت فاحش در شاخص های ارزیابی مدل های شبکه عصبی مصنوعی نسبت به روش های رگرسیونی در عملکرد مناسب آنها برای تعداد کم نمونه های مدل میباشد. بنابراین شبکه های عصبی مصنوعی به خصوص شبکه های ژئومورفولوژیکی به عنوان یک ابزار قوی پیش بینی شایسته بار رسوب یک سیستم پیچیده رودخانه ای معرفی میشوند.