مطالب مرتبط با کلیدواژه

نویززدایی


۱.

پیش بینی بازده آتی بازار سهام با استفاده از مدل های آریما، شبکه عصبی و نویززدایی موجک(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه عصبی آریما پیش بینی برون نمونه ای شبکه عصبی موجکی نویززدایی

حوزه های تخصصی:
  1. حوزه‌های تخصصی مدیریت مدیریت صنعتی تحقیق در عملیات مدلسازی ریاضی
  2. حوزه‌های تخصصی مدیریت مدیریت مالی – حسابداری تئوریهای حسابداری بازده سهام
تعداد بازدید : ۸۴۹ تعداد دانلود : ۴۲۲
موضوع شناخت و بررسی رفتار قیمت سهام، همواره یکی از موضوع های مهم و مورد توجه محافل علمی و سرمایه گذاری بوده است. اخیراً تعداد زیادی از پژوهشگران در پژوهش های خود بازار سهام را به عنوان یک سیستم پویای غیرخطی در نظر گرفته اند. در این پژوهش، تلاش شده است با استفاده از تبدیل موجک و شبکه عصبی مدلی ارایه شود که پیش بینی دقیق تر و با خطای کمتری از بازده شاخص بورس اوراق بهادار داشته باشد. در این مدل ترکیبی، از خاصیت هموارسازی تبدیل موجک برای کاهش سطح نویز داده ها استفاده و سپس به وسیله شبکه عصبی پیش بینی شده است. مقایسه خطای پیش بینی مدل های آریما، شبکه عصبی و شبکه عصبی موجکی نشان می دهد که کاهش نویز عملکرد پیش-بینی بازده شاخص را بهبود می بخشد. به بیان بهتر، مدل شبکه عصبی موجکی (نویززدایی سیگنال) عملکردی بهتر از مدل های آریما و شبکه عصبی دارد. همچنین، مدل های شبکه عصبی قدرت پیش بینی کنندگی بهتری را نسبت به مدل های آریما نشان می دهد. مقادیر مربوط به آزمون دایبولد – ماریانو نیز این نتایج را تایید می نماید.
۲.

پیش بینی بازده بازار سهام تهران با استفاده از ترکیب تجزیه موجک و شبکه عصبی فازی تطبیقی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تبدیل موجک شبکه عصبی فازی تطبیقی محاسبات نرم نویززدایی بورس اوراق بهادار

حوزه های تخصصی:
تعداد بازدید : ۵۹۱ تعداد دانلود : ۴۵۳
همواره مدل سازی و پیش بینی متغیرهای مالی یکی از موضوع های مورد علاقه و مهم برای اقتصاددانان بوده است. در این مقاله، ساختاری برای پیش بینی سری های زمانی ارایه شده است که با استفاده از رویکرد محاسبات نرم این امکان را فراهم می آورد تا بتوان با دقت بیشتر مقادیر آینده یک سری زمانی را پیش بینی کرد. در این روش، با استفاده از تجزیه موجک، نویز های تصادفی داده های ورودی شبکه عصبی فازی تطبیقی کاهش می یابد و ازاین رو، این عمل باعث کاهش خطا و بهبود در پیش بینی سری زمانی آشوبی موردنظر می شود. در این مقاله، روش یادشده با استفاده از سری بازده بورس اوراق بهادار تهران در بازه زمانی 8/1/1390 تا 1/07/1395 مورد ارزیابی قرار گرفته که نتایج بیان کننده برتری روش پیشنهادی نسبت به سایر روش هاست. همچنین معنا داری اختلاف در پیش بینی مدل های مختلف با استفاده از آزمون MGN مورد بررسی قرار گرفت که نتایج نشان دهنده اختلاف معنا دار در پیش بینی مدل های مختلف بود.