مطالب مرتبط با کلیدواژه
۱.
۲.
۳.
۴.
۵.
۶.
Predictive maintenance
حوزههای تخصصی:
The objective of this study is to explore the influence of predictive maintenance technologies on operational efficiency in manufacturing startups, focusing on implementation processes, operational impacts, and the challenges encountered. This qualitative study employed semi-structured interviews to gather data from key stakeholders in manufacturing startups, including founders, operations managers, and maintenance engineers. A total of 22 participants were interviewed, with the sample size determined by theoretical saturation. The interviews were transcribed verbatim and analyzed using NVivo software. Thematic analysis was conducted to identify and categorize key themes and subthemes related to the implementation and impact of predictive maintenance technologies. The analysis revealed three main themes: Implementation Process, Operational Impact, and Challenges and Barriers. Within these themes, several categories and concepts emerged. The Implementation Process theme highlighted the importance of planning, technology selection, system integration, employee involvement, pilot testing, change management, and post-implementation review. The Operational Impact theme identified efficiency gains, predictive analytics, maintenance scheduling, resource optimization, and quality improvement as significant outcomes. The Challenges and Barriers theme underscored technological challenges, financial constraints, organizational resistance, skill gaps, data management issues, and the necessity of vendor support. The findings indicate that predictive maintenance technologies significantly enhance operational efficiency in manufacturing startups by reducing downtime, increasing productivity, and optimizing resource utilization.
AI-Powered Network Management with Enhancing Reliability and Security(مقاله علمی وزارت علوم)
منبع:
پژوهشنامه پردازش و مدیریت اطلاعات دوره ۴۰ تابستان ۱۴۰۴ ویژه نامه انگلیسی ۴ (پیاپی ۱۲۵)
119 - 148
حوزههای تخصصی:
Background: Contemporary multi-protocol networks necessitate scalability, reliability, energy efficiency, and security due to the increasing number of devices and the diversification of network traffic. Conventional network management methods are inadequate to meet these demands, necessitating sophisticated solutions. Artificial intelligence (AI) has emerged as a significant field, offering advanced methods including predictive maintenance, anomaly detection, and intelligent resource management. Objective: This article aims to critically evaluate the effectiveness, flexibility, and productivity of AI-based applications in addressing major challenges in network management, including performance, scalability, energy consumption, threat detection rates, and cost. Methods: The study employs simulations and modeled datasets to assess AI-oriented solutions across various network environments, such as industrial IoT, smart cities, and telecommunications. The evaluation encompasses factors including Mean Time Between Failure (MTBF), resource utilization, delay minimization, and operating cost reduction. Digital twins, intelligent routing algorithms, and self-attention-based anomaly detection models are utilized, and the overall performance of these integrated technologies is analyzed. Results: The analysis demonstrates that AI-powered systems achieve near-optimal performance across all evaluated indicators. Specifically, the Manufacturing and Automotive Knowledge (MAK) sector observed a 52% increase in MTBF, the Banking, Financial Services, and Insurance (BFSI) sector noted a 32.39% improvement in energy efficiency, and the Defense and Public Enterprise (DPE) sector experienced a 94% increase in advanced threat detection. Conclusion: The findings indicate that AI solutions can effectively address many of the challenges present in current networks, offering cost-efficient and secure methods for implementing new communication networks with vast potential. Nonetheless, further empirical research is necessary to generalize these results and validate their applicability in real-world scenarios.
Artificial Intelligence and Machine Learning in Telecommunications Revolutionizing Customer Experience and Enhancing Service Delivery(مقاله علمی وزارت علوم)
منبع:
پژوهشنامه پردازش و مدیریت اطلاعات دوره ۴۰ تابستان ۱۴۰۴ ویژه نامه انگلیسی ۴ (پیاپی ۱۲۵)
609 - 636
حوزههای تخصصی:
Background: The telecommunications industry is at the crossroad of change seemingly precipitated by the use of Artificial Intelligence (AI) and Machine Learning (ML). These technologies have yielded new features like network automation, prescriptive analytics, and contextual-consumer engagement, solving traditional dilemmas in service delivery and operationalization. Objective: The current article seeks to understand how AI and ML has positively affected customer experience and service provision in the telecommunication industry. The research objectives focus on how to increase KPIs to service latencies, network reliability, and customer retention while at the same time establishing the problems associated with big data large-scale implementation. Methods: Samples were gathered using systematic reviews of the current literature, meta-analysis of case studies, and assessment of industry datasets. This concerned artificial intelligence enabled operations such as dynamic resource management, real-time customer emotions analysis and real-time fault detection. Regression analysis and time series models were used in order for measuring performance indices. Results: AI and ML integration led to multifaceted advancements: a decrease of average service latency by 55%, reduction of network downtime by 70%, and an increase of maintenance predictions accuracy by 35%. The customer retention rate which had improved to 25% was also credited to better personalization of the services as well as having proper service management. AI-equipped resource allocation also raised efficiency in bandwidth utilization by 60%. Conclusion: AI and ML are positively disrupting telecommunications as they deliver remarkable enhancements in the caliber of services and client satisfaction. With all the challenges in data governance and interoperability, it is clear that their adoption promises a great chance in enhancing the current standards within the telecommunications field and creating the basis for the development of a more sophisticated environment.
The Integration of Drones and IoT in Smart City Networks(مقاله علمی وزارت علوم)
منبع:
پژوهشنامه پردازش و مدیریت اطلاعات دوره ۴۰ تابستان ۱۴۰۴ ویژه نامه انگلیسی ۴ (پیاپی ۱۲۵)
895 - 931
حوزههای تخصصی:
Background: Smart city technology solutions have recently ramped up the utilization of drones with Internet of Things (IoT) technologies for improving smart city systems. IoT sensors combined with real-time communication ad hoc network drones are also another area with great potential including traffic monitoring, environment management, disaster management, etc. Nevertheless, issues regarding energy consumption and density, the number of nodes that can be incorporated into the network, as well as the issue of avoiding collisions between the signal sent by one node with the signals that may be transmitted by other nodes are still observed as essential impediments to the wide application of WSNs. Objective: The article seeks to propose and assess algorithms for operating drone-IoT systems whilst dealing with issues like energy efficiency, real-time data communication, avoiding mid-air collisions, and dealing with the increasing number of systems in crowded urban areas. Methods: This study utilizes a two-time algorithm technique that was adopted from the prior study. The first algorithm provides a method for speed and position control of drones, ensuring that the distance between the drones is sufficient and not violable. The second algorithm is centered on energy reduction, which selects the precise energy usage by employing path planning in real time. The effectiveness of these algorithms was determined using simulation models with respect to metrics including latency, energy consumption, and scalability. Results: The proposed system revealed the systems’ improvements in energy efficiency, fewer collisions, and strong scalability of drone management. Main conclusions possible to conclude during the experiment reveal the system’s generic aptitude to the different urban situations and its stability in changing traffic conditions. Conclusion: The article presents a scalable and efficient solution for extending drone applications to smart cities using IoT platforms. In this way, the results can serve as the further theoretical and experimental base for investigating the trends of management and the infrastructure of cities.
Leveraging AI for Predictive Maintenance with Minimizing Downtime in Telecommunications Networks(مقاله علمی وزارت علوم)
منبع:
پژوهشنامه پردازش و مدیریت اطلاعات دوره ۴۰ تابستان ۱۴۰۴ ویژه نامه انگلیسی ۴ (پیاپی ۱۲۵)
1117 - 1147
حوزههای تخصصی:
Background: Telecommunications networks are exposed to numerous issues concerning equipment and that causes network outage, which proves very expensive. Basic maintenance methodologies like reactive or even scheduled preventive maintenance cannot cope up with the increasing trends in the facilities of telecom companies. Objective: The article examines how AI is applied to support predictive maintenance so that telecommunication networks can perform as intended with reduced downtime. Methods: The review of existing AI algorithms is presented, focusing on the ML models and deep learning methods. Network operations and maintenance logs are analyzed for data to assess the capabilities of the AI models in terms of prediction. It identifies and analyses such quantifiable parameters as the failure rate prediction accuracy and the response time cut. Results: Computerisation of the forecast maintenance revealed a corresponding decrease in equipment failure incidences and generally reduced time lost due to unscheduled stops. Through the improved network performance, the response to potential threats was quicker than before and services became more reliable and inexpensive to offer. Conclusion: To reduce network outages, reduce network vulnerability, and maximize the efficiency of telecommunications operations, the use of AI-based predictive maintenance can be viewed as a prospect. As technology advances, newer versions of AI algorithms will provide improved predictive strength and incorporation into the telecommunications system.
Drone-Assisted Network Maintenance as a Revolutionizing Telecom Infrastructure(مقاله علمی وزارت علوم)
منبع:
پژوهشنامه پردازش و مدیریت اطلاعات دوره ۴۰ تابستان ۱۴۰۴ ویژه نامه انگلیسی ۴ (پیاپی ۱۲۵)
1309 - 1339
حوزههای تخصصی:
Background: Telecommunication infrastructure requires regular maintenance and upkeep for its networks’ matrices, but existing approaches have been associated with issues such as time consumption and concern costs, as well as safety hazards. Newer developments in drone technology present progressive opportunity through the improvement of current maintenance processes by means of automation, predictability, and real time computation. Objective: The article seeks to assess whether the use of drone in telecommunication maintenance enhances the operational productivity through increasing the efficiency, reducing cost, safety, environmental and scalability and in different terrains. Methods: The methods followed included the conduct of experimental surveys with drone operations in five different telecommunication settings. These areas of interest were inspection efficiency, the accuracy of condition-based maintenance, signal received signal power, delay reduction through edge computing, and energy consumption. Sophisticated numerical computations, like Kalman filters and various frameworks of edge computing, were used in this context to draw analytical insights on the collected data. Results: The methods that used drones lowered the time needed for inspections by ¾ and cut the expenses by 49.3% and increased safety and quality of the coverage. Predictive maintenance was found to have achieved 89.7% accuracy with the system response time being 246ms at different site. The results of energy consumption model depicted the errors under 2% confirming this approach’s suitability for operational planning. Conclusion: By evaluating the applicability of drones in telecoms maintenance, the paper shows that the notion of drones in this context is promising both now and in the future. These results signal existing and potential applications of drones is to incorporate drone technology into infrastructural management solutions to address emerging needs in the industry.