Deepak Kumar Verma

Deepak Kumar Verma

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Hybrid EEG-Based Eye State Classification Using LSTM, Neural Networks, and Multivariate Analysis(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Machine Learning Ensemble classifiers feature selection SVM LSTM

حوزه‌های تخصصی:
تعداد بازدید : ۷ تعداد دانلود : ۳
This paper focuses on a new hybrid machine learning model for classifying eye states from EEG signals by integrating traditional techniques with deep learning methods. Our Hybrid LSTM-KNN architecture employs KNN for classification and uses LSTM networks to extract features temporally. In addition, we perform extensive feature engineering, including statistical Z-test and IQR filtering, dimensionality reduction using PCA, and multivariate analysis to further model the performance. Moreover, an SVM-based unsupervised clustering approach is proposed to partition the EEG feature space, followed by ensemble learning in each cluster to improve accuracy and robustness. Using the EEG Eye State Dataset for the first assessment, the Hybrid LSTM-KNN model recorded an accuracy of 87.2% without PCA. Further improvements through statistical filtering outperformed initial expectations, achieving a 6% rise in performance to 89.1% after outlier removal, 89.1% with Z-test (σ = 3), and 88.3% with IQR (1.5x). After applying PCA along with ensemble learning post clustering, the final model exceeded expectations with an accuracy and F1 score of 96.8%, surpassing Ensemble Cluster-KNN and traditional models based on Ensemble Cluster-KNN, Logistic Regression, SVM, and Random Forest. The outcome demonstrates the robustness and noise-resilience of the model’s performance in practical real-time brain-computer interface and cognitive monitoring systems.
۲.

Hybrid Weighted Random Forests Method for Prediction & Classification of Online Buying Customers(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Weighted random forest Machine Learning Classification Prediction Online customer

حوزه‌های تخصصی:
تعداد بازدید : ۴۷۸ تعداد دانلود : ۲۷۵
Due to enchantment in network technology, the worldwide numbers of internet users are growing rapidly. Most of the internet users are using online purchasing from various sites. Due to new online shopping trends over the internet, the seller needs to predict the online customer’s choice. This field is a new area of research for machine learning researchers. A random forest (RF) machine learning method is a widely used classification method. It is mainly based on an ensemble of a single decision tree. Online e-commerce websites accumulate a massive quantity of data in large dimensions. A Random Forest is an efficient filter in high-dimensional data to reliably classify consumer behaviour factors. This research article mainly proposed an extension of the Random Forest classifier named “Weighted Random Forests” (wRF), which incorporates tree-level weights to provide much more accurate trees throughout the calculation as well as an assessment of vector relevance. The weighted random forest algorithm incorporates the C4.5 method named a “Hybrid Weighted Random Forest” (HWRF) to forecast online consumer purchasing behaviour. The experimental results influence the quality of the proposed method in the prediction of the behaviour of online buying customers over existing methods.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان