شکوفه بنی هاشمی

شکوفه بنی هاشمی

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Performance of Banks’Asset Liability Management Strategies: APractical Approach with Machine Learning

کلیدواژه‌ها: Asset liability management Machine Learning Performance Evaluation Profitability

حوزه‌های تخصصی:
تعداد بازدید : ۸ تعداد دانلود : ۶
This research examines the performance of banks' Asset Liability Management (ALM) strategies using Data Envelopment Analysis (DEA) to improve bank efficiency and estimate the efficiency scores of emerging banks. ALM is an essential process for financial institutions to manage their assets and obligations effectively, ensuring profitability, liquidity, and risk oversight, while DEA offers a comprehensive methodology for evaluating and comparing the efficiency of Decision-Making Units (DMUs). By utilizing DEA in the context of ALM, this research seeks to uncover inefficiencies and recommend optimization strategies. The results reveal considerable differences in efficiency levels, underscoring potential improvement areas and best practices. This study adds to the existing literature by illustrating the practical use of DEA in ALM and providing actionable insights for banks to boost their performance
۲.

Using MODEA and MODM with Different Risk Measures for Portfolio Optimization(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Portfolio optimization Data Envelopment Analysis Multi-Objective Decision Making Negative data Conditional Value at Risk

حوزه‌های تخصصی:
تعداد بازدید : ۵۰۲ تعداد دانلود : ۳۴۷
The purpose of this study is to develop portfolio optimization and assets allocation using our proposed models. The study is based on a non-parametric efficiency analysis tool, namely Data Envelopment Analysis (DEA). Conventional DEA models assume non-negative data for inputs and outputs. However, many of these data take the negative value, therefore we propose the MeanSharp-βRisk (MShβR) model and the Multi-Objective MeanSharp-βRisk (MOMShβR) model base on Range Directional Measure (RDM) that can take positive and negative values. We utilize different risk measures in these models consist of variance, semivariance, Value at Risk (VaR) and Conditional Value at Risk (CVaR) to find the best one as input. After using our proposed models, the efficient stock companies will be selected for making the portfolio. Then, by using Multi-Objective Decision Making (MODM) model we specified the capital allocation to the stock companies that selected for the portfolio. Finally, a numerical example of the Iranian stock companies is presented to demonstrate the usefulness and effectiveness of our models, and compare different risk measures together in our models and allocate assets.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان