بهبود پیش بینی مدل های ARIMA با طراحی مدل های ترکیبی یادگیری عمیق: مطالعه موردی رمزارزها(مقاله علمی وزارت علوم)
منبع:
اقتصاد و تجارت نوین سال ۱۹ بهار ۱۴۰۳ شماره ۱
163-191
حوزههای تخصصی:
این پژوهش بدنبال طراحی و ارائه رویکردی جه بهبود نتایج پیش بینی بدست آمده از رویکردهای سنتی اقتصادسنجی با استفاده از روش های نوین مدل سازی است. مدل سازی خودرگرسیون هم انباشته میانگین متحرک (ARIMA، بعنوان یکی از گسترده ترین روش های پیش بینی سری های زمانی اقتصادی و مالی شناخته می شود، که رویکرد مناسبی بویژه برای پیش بینی های خطی کوتاه مدت سری های زمانی محسوب می شود. با این حال فرض وجود اثرات غیرخطی در سری های زمانی و ظهور الگوریتم های نوین مدل سازی بخصوص روش های یادگیری عمیق، که قابلیت استخراج ویژگی های پیچیده سری زمانی و مدل سازی آن را دارند، انگیزه ای برای محققین جهت بررسی و مقایسه قدرت پیش بینی رویکردهای سنتی و نوین مدل سازی گردیده است. در این پژوهش، دو روش برای پیش بینی قیمت چهار رمزارز، با بالاترین ارزش بازار مورد بررسی قرار می گیرد. روش مدل سازی (ARIMA) و سه رویکرد در حوزه یادگیری عمیق شامل (RNN، LSTMوGRU)، علاوه بر این یک رویکرد ترکیبی از مدل های یادگیری عمیق و ARIMA معرفی شده است که ترکیبی از نقاط قوت هر دو مدل برای افزایش دقت پیش بینی است. نتایج نشان می دهد مدل های ترکیبی ARIMA و یادگیری عمیق در پیش بینی مقادیر آتی سری زمانی نسبت به هر یک از مدل های ARIMA و یادگیری عمیق بصورت جداگانه، بهتر عمل می کنند. همچنین مدل ARIMA-GRU نسبت به تمام مدل های برآورد شده، مقادیر خطای پیش بینی کمتری دارد. طبقه بندی JEL : C22،C89،G17