آرشیو

آرشیو شماره ها:
۶۲

چکیده

بسیاری از موارد بحران های مالی مربوط به شرکت های سهامی عام بوده که درحال افزایش است. بسیاری از سرمایه گذاران و اعتباردهندگان در مورد پیش بینی بحران مالی به خصوص زمانی که مدیریت سود رخ می دهد مشکلاتی دارند. تحقیقات اخیر به شناسایی عوامل و فاکتورهای مرتبط با مدیریت سود می پردازد. بنابراین از طریق آن قادر به تعیین ارتباط میان این عوامل و دستکاری سود هستند. به منظور کاهش ریسک بحران های مالی ناشی ازآن و کمک به سرمایه گذاران برای اجتناب از زیان های بزرگ در بازار سهام لازم است تا مدلی برای پیش بینی مدیریت سود توسعه یابد. هدف اصلی این تحقیق بررسی دقت پیش بینی مدیریت سود با استفاده از شبکه های عصبی و درخت تصمیم گیری و مقایسه آن بامدل های خطی است. برای این منظور نه متغیر تأثیرگذار بر مدیریت سود به عنوان متغیرهای مستقل و اقلام تعهدی اختیاری، به عنوان متغیر وابسته مورد استفاده قرار گرفته است. در این تحقیق از چهار صنعت کشاورزی، دارویی، نساجی و فرآورده های نفتی، تعداد 36 شرکت مورد بررسی قرارگرفت. از روش رگرسیون کمترین مربعات جهت مدل خطی و از شبکه عصبی پیشخور تعمیم یافته و درخت تصمیم گیری Cart, C5.0 جهت بررسی از طریق تکنیک های داده کاوی استفاده شد. نتایج حاصل از این تحقیق نشان دادکه روش شبکه عصبی و درخت تصمیم گیری در پیش بینی مدیریت سود نسبت به روش های خطی دقیق تر و دارای سطح خطای کمتری است. در رابطه با ارتباط بین متغیرهای وابسته با متغیر مستقل نیز می توان گفت، مدیریت سود با متغیرهای اقلام تعهدی اختیاری دوره قبل ، اقلام تعهدی غیراختیاری دوره قبل یا آستانه عملکرد  و ریسک درچهار روش مدل های خطی، شبکه عصبی، درخت های C5.0 و Cart دارای بیشترین ارتباط است. Abstract Many financial crisis cases related to the public companies have increased recently, but many investors and creditors are difficult to foresee the financial crisis, especially in the cases with earnings management. In literature, many studies related to earnings management only focus on identifying some related factors which can significantly affect earnings management. Therefore, we can only figure out the correlation between these factors and earnings management. In order to decrease the financial crisis risks derived from earnings management and help the investors avoid suffering a great loss in the stock market, we developed a neural network model to predict the level of earnings management. This study aims to investigate the accuracy of earning management forecast by neural network and decision making tree as well as comparing that by linear models. To these end nine effective variables on earnings management were used as independent variables and discretionary accruals as dependent variables. From four industries: agriculture, pharmaceutical, textile and petroleum, 36 firms selected during 2006 to 2013. The least squares regression for linear model, generalized feed forward neural network and decision making tree c5.0, cart were applied for data mining. The results indicated that neural network and decision making tree has the least error in forecasting earnings management than more accurate linear methods. Concerning the relationship between dependent and independent variables, it is said that earning managements by discretionary accrual variables of the prior period (DAI), non-discretionary accruals of prior period or threshold performance (THOD) and risk (Risk) in four linear models, neural network, C5.0 trees and cart has the most correlation.

تبلیغات