مقایسه دقت مدل های منتخب یادگیری ماشین جهت پیش بینی قیمت سهام در بورس اوراق بهادار(مقاله علمی وزارت علوم)
منبع:
بورس اوراق بهادار سال ۱۶ تابستان ۱۴۰۲ شماره ۶۲
75 - 102
حوزه های تخصصی:
رشد بازار سرمایه با سرعت چشمگیری در حال افزایش است. همین امر باعث تقاضای بالاتر برای اطلاعات، تلاش بیشتر برای پیش بینی و ابداع مدل های جدید پیش بینی آینده بازار شده است. مدلهای پیش بینی در سه دسته قابل طبقه بندی هستند. دسته اول از تحلیل تکنیکی، دسته دوم از تحلیل بنیادین و دسته سوم از داده کاوی و یادگیری ماشین استفاده می کنند. در پژوهش پیش رو با تمرکز بر روش داده کاوی به مقایسه دقت مدل های منتخب یادگیری ماشین شامل شبکه عصبی، رگرسیون لجستیک، نزدیک ترین همسایه k، ماشین بردار پشیبان و اعتبارسنجی ضربدری جهت پیش بینی قیمت سهام برای 12 شرکت منتخب بورس اوراق بهادار تهران که از طریق روش حذف سیستماتیک انتخاب شده اند در قالب مدلهای یادگیری ماشین پرداخته و نتایج این مقاله نشان داد از بین الگوریتمهای یادگیری ماشین، الگوریتم ماشین بردار پشتیبان بیشترین قدرت پیش بینی کنندگی در قیمت سهام را به خود اختصاص داده است. کلمات کلیدی: بورس اوراق بهادار، پیش بینی؛ قیمت سهام، الگوریتم، یادگیری ماشینکد طبقه بندی JEL: C8،G1