مطالب مرتبط با کلیدواژه

روش های غیر خطی


۱.

مطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی منطق فازی تقاضا شبکه های عصبی روش های غیر خطی گاز شهری

حوزه های تخصصی:
تعداد بازدید : ۳۱۶۸ تعداد دانلود : ۱۵۵۱
اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد. عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای مورد نیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته، اقتصاددانان و علمای مدیریت برای برآورد تقاضا اغلب از روش های اقتصادسنجی استفاده کرده اند. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی و مدل های فازی در بسیاری از زمینه های کاربردی استفاده شده اند که هر کدام از آنها دارای محاسن و معایبی هستند. بنابراین، ترکیب موفقیت آمیز این دو روش، مدل سازی شبکه های عصبی مصنوعی و فازی، با اتکا به ترکیب قدرت یادگیری شبکه های عصبی و عملکرد منطقی سیستم های فازی تبدیل به ابزار بسیار قدرتمندی شده که هم اکنون کاربردهای گوناگونی دارند. در این تحقیق، تقاضای اشتراک گاز شهری خانگی شهر تهران با استفاده از روش خطی ARIMA و روش غیرخطی شبکه های عصبی فازی بررسی شده و از لحاظ شش معیار ارزیابی عملکرد با یکدیگر مقایسه شده اند. نتایج تحقیق بیان گر این حقیقت است که برای پیش بینی تقاضای اشتراک گاز شهری، شبکه های عصبی فازی در تمامی شش معیار ارزیابی عملکرد، بر روش ARIMA برتری داشته، بنابراین مناسب تر است.
۲.

ارزیابی پیش بینی پذیری قیمت طلا و مقایسه پیش بینی روش های خطی و غیرخطی

کلیدواژه‌ها: ANFIS آزمون BDS پیش بینی پذیری روش های غیر خطی قیمت طلا شبکه عصبی فازی

حوزه های تخصصی:
تعداد بازدید : ۱۵۴۴ تعداد دانلود : ۷۱۹
در این مقاله قابلیت پیش بینی بازده روزانه قیمت جهانی طلا از تاریخ 25/07/2011 تا 17/12/2012 مورد بررسی قرار گرفته است. بدین منظور ابتدا با استفاده از آزمون براک- دیکرت- شاینکمن (BDS) به بررسی خطی، غیرخطی و آشوبناک بودن سری مورد مطالعه پرداخته شده است. نتایج تحقیق فرض تصادفی بودن سری مورد مطالعه را رد می کند که شاهدی بر پیش بینی پذیر بودن بازده روزانه قیمت طلاست. همچنین فرضیه عدم وجود رابطه غیرخطی در جملات پسماند مدل خطی رد می شود که نشان از وجود رفتار غیرخطی در سری مورد بررسی است. برای پیش بینی بازده روزانه قیمت طلا یک مدل عصبی فازی ANFIS طراحی گردیده و نتایج آن با استفاده از معیارهای مختلف مورد ارزیابی قرار گرفته است. همچنین نتایج با نتایج دو مدل خطی ARMA و غیرخطی GARCH مقایسه شد که مطابق انتظار، مدل غیرخطی ANFIS پیش بینی بهتری از سایر مدل های رقیب داشت. در نهایت با استفاده از آماره مورگان- گرنجر- نیبولد (MGN) معنی داری اختلاف پیش بینی مدل ها مورد بررسی قرار گرفت. نتایج حاکی از معنی دار بودن اختلاف پیش بینی مدل های غیرخطی نسبت به مدل خطی ARMA است.