مطالب مرتبط با کلیدواژه

Ensemble learning


۱.

Clinical Healthcare Applications: Efficient Techniques for Heart Failure Prediction Using Novel Ensemble Model(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Machine Learning Heart failure Cardiovascular Diseases Ensemble learning Healthcare

حوزه‌های تخصصی:
تعداد بازدید : ۳۷۹ تعداد دانلود : ۲۲۰
Heart failure is a severe medical ailment that significantly impacts patients’ well-being and the healthcare system. For improved results, early detection and immediate treatment are essential. This work aims to develop and evaluate predictive models by applying sophisticated ensemble learning techniques. In order to forecast heart failure, we used a clinical dataset from Kaggle. We used the well-known ensemble techniques of bagging and random forest (RF) to create our models. With a predicted accuracy of 82.74%, the RF technique, renowned for its versatility and capacity to handle complex data linkages, fared well. The bagging technique, which employs several models and bootstrapped samples, also demonstrated a noteworthy accuracy of 83.98%. The proposed model achieved an accuracy of 90.54%. These results emphasize the value of group learning in predicting cardiac failure. The area under the ROC curve (AUC) was another metric to assess the model’s discriminative ability, and our model achieved 94% AUC. This study dramatically improves the prognostic modeling for heart failure. The findings have extensive implications for clinical practice and healthcare systems and offer a valuable tool for early detection and intervention in cases of heart failure.
۲.

Explainable Diabetes Prediction via Hybrid Data Preprocessing and Ensemble Learning(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Diabetes Prediction Explainable AI Ensemble learning lime SHAP E-Health

تعداد بازدید : 0 تعداد دانلود : 0
Accurate and early prediction of diabetes is crucial for initiating prompt treatment and minimizing the risk of long-term health issues. This study introduces a comprehensive machine learning model aimed at improving diabetes prediction by leveraging two clinical datasets: the PIMA Indians Diabetes Dataset and the Early-Stage Diabetes Dataset. The pipeline tackles common challenges in medical data, such as missing values, class imbalance, and feature relevance, through a series of advanced preprocessing steps, including class-specific imputation, engineered feature construction, and SMOTETomek resampling. To identify the most informative predictors, a hybrid feature selection strategy is employed, integrating recursive elimination, Random Forest-based importance, and gradient boosting. Model training uses Random Forest and Gradient Boosting classifiers, which are fine-tuned and combined through weighted ensemble averaging to boost predictive performance. The resulting model achieves 93.33% accuracy on the PIMA dataset and 98.44% accuracy on the Early-Stage dataset, outperforming previously reported approaches. To enhance transparency and clinical applicability, both local (LIME) and global (SHAP) explainability methods are applied, highlighting clinically relevant features. Furthermore, probability calibration is performed to ensure that predicted risk scores align with true outcome frequencies, increasing trust in the model’s use for clinical decision support. Overall, the proposed model offers a robust, interpretable, and clinically reliable solution for early-stage diabetes prediction.