محمدرضا کیوان پور

محمدرضا کیوان پور

مطالب
ترتیب بر اساس: جدیدترینپربازدیدترین

فیلترهای جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۴ مورد از کل ۴ مورد.
۱.

Explainable Diabetes Prediction via Hybrid Data Preprocessing and Ensemble Learning(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Diabetes Prediction Explainable AI Ensemble learning lime SHAP E-Health

تعداد بازدید : 0 تعداد دانلود : 0
Accurate and early prediction of diabetes is crucial for initiating prompt treatment and minimizing the risk of long-term health issues. This study introduces a comprehensive machine learning model aimed at improving diabetes prediction by leveraging two clinical datasets: the PIMA Indians Diabetes Dataset and the Early-Stage Diabetes Dataset. The pipeline tackles common challenges in medical data, such as missing values, class imbalance, and feature relevance, through a series of advanced preprocessing steps, including class-specific imputation, engineered feature construction, and SMOTETomek resampling. To identify the most informative predictors, a hybrid feature selection strategy is employed, integrating recursive elimination, Random Forest-based importance, and gradient boosting. Model training uses Random Forest and Gradient Boosting classifiers, which are fine-tuned and combined through weighted ensemble averaging to boost predictive performance. The resulting model achieves 93.33% accuracy on the PIMA dataset and 98.44% accuracy on the Early-Stage dataset, outperforming previously reported approaches. To enhance transparency and clinical applicability, both local (LIME) and global (SHAP) explainability methods are applied, highlighting clinically relevant features. Furthermore, probability calibration is performed to ensure that predicted risk scores align with true outcome frequencies, increasing trust in the model’s use for clinical decision support. Overall, the proposed model offers a robust, interpretable, and clinically reliable solution for early-stage diabetes prediction.
۲.

Weighted Content Similarity Feature for Software Architecture Anti-Patterns Prediction(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Architectural anti-patterns Dependency-based smells Effective features in dependencies

تعداد بازدید : 0 تعداد دانلود : 0
As user needs change frequently over time, software systems must evolve; therefore, increased software complexity inevitably violates software engineering principles. The violations of these principles are called anti-patterns, which differ from bugs and faults, and can occur at various levels ofion; finally, they reduce software quality. Anti-patterns can occur in various software, including web applications, and their prediction can effectively help prevent their occurrence. The anti-patterns prediction process at different levels ofion utilizes software features, whose threshold values impact the accuracy of this process. This study presents an improved component-level feature, called weighted content similarity, to more accurately detect component dependencies by minimizing the influence of common words that are often used in comments but are worthless in identifying the relationship between components. Therefore, the comment words are weighted using TF-IDF values. F-Measure values are calculated to show the greater impact of our proposed weighted feature compared to structural, topological, and content similarity features on detecting dependencies between components of an open-source system. The prediction of component anti-patterns, such as cyclic and hub-like dependencies, will be possible with the help of dependency detection. The average F-Measure of topological features in OpenJPA 2.0.0 software is 0.73, content similarity features is 0.76, and weighted content similarity features is 0.88. Therefore, the F-Measure of our weighted content similarity feature is 0.12 higher than the unweighted content similarity feature and is 0.15 higher than the topological feature.  So, it is more effective than these two features in predicting dependencies between components using machine learning algorithms.
۳.

Elevating Accuracy: Enhanced Feature Selection Methods for Type 2 Diabetes Prediction(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Diabetes Mellitus Supervised Learning Ensemble method Pima Dataset E-Health

تعداد بازدید : ۱۷۵ تعداد دانلود : ۱۳۶
Diabetes, a metabolic disorder, poses significant annual risks due to various factors, requiring effective management strategies to prevent life-threatening complications. Classified into Type 1, Type 2, and Gestational diabetes, its impact spans diverse demographics, with Type 2 diabetes being particularly concerning due to cellular insulin deficiencies. Early prediction is crucial for intervention and complication prevention. While machine learning and artificial intelligence show promise in predictive modeling for diabetes, challenges in interpreting models hinder widespread adoption among physicians and patients. The complexity of these models often raises doubts about their reliability and practical utility in clinical settings. Addressing interpretability challenges is crucial to fully harnessing predictive analytics in diabetes management, leading to improved patient outcomes and reduced healthcare burdens. Previous research has utilized various algorithms like Naïve Bayes, Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and decision trees for patient classification. In this study using the Pima dataset, we applied a preprocessing technique that utilized the most important features identified by the Random Forest algorithm and we used an ensemble method combining the SVM algorithm and Naïve Bayes for the model. In the first section of the proposed method, we provided explanations regarding the dataset. In the second section, we elucidated all preprocessing steps applied to this dataset, and in the third section, we evaluated the model using the selected algorithm under investigation. The proposed model, after going through the various stages, was able to report an accuracy of 81.82%, a precision of 82.34%, an AUC of 88.19% and a Recall of 70.68%. Considering the review of similar studies, an improvement of 3.99% in accuracy demonstrates a significant advancement that highlights the benefits of traditional methods in disease prediction. These findings suggest the potential use of web-based applications to encourage both physicians and patients in diabetes prediction efforts.
۴.

ارائه مدل ابتکاری الگوریتم ژنتیک برای حل مسئله برنامه آموزشی استادان با تأمین نظر دانشجویان(مقاله علمی وزارت علوم)

کلیدواژه‌ها: الگوریتم ژنتیک تابع برازندگی زمان بندی فهرست معکوس حلقوی ممتیک الگوریتم

حوزه‌های تخصصی:
تعداد بازدید : ۴۷۹ تعداد دانلود : ۲۱۴
زمان بندی در برنامه ریزی درسی دانشجویان و استادان با روش های متنوعی صورت می گیرد. این تحقیق به حل مسئله برنامه آموزشی استادان با تأمین نظر دانشجویان می پردازد. در این مسئله، تخصیص درس و زمان به استادان با در نظر گرفتن ساعت جلسه مشترک استادان و زمان بندی ساعات تدریس فشرده آنان و محدودیت کلاس ها انجام می شود. بدین منظور، روش الگوریتم ژنتیک در دو مرحله به کار برده شده است. در مرحله اول الگوریتم، از عملگرِ برش تک نقطه ای استفاده شد و در مرحله دوم الگوریتم، عملگر هوشمند جدیدی به نام فهرست معکوس حلقوی با در نظر گرفتن زمان های طلایی، نقره ای و برنزی برای درس های مختلف به کار رفت. مزیت این الگوریتم استفاده از تابع برازندگی جدید و همچنین معیار انتخاب جدید و یک عملگر جدید است. این روش برخلاف روش های معمول، برازش کل جمعیت را در نظر می گیرد و تلاش می کند جواب های امکان ناپذیر را حذف کند. در این الگوریتم، جواب نهایی از جواب های بهینه متعدد تولید شده انتخاب می شود. نتایج نشان داد این روش با برازش بهتری به جواب های بهینه می رسد.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان