مطالب مرتبط با کلیدواژه

طبقه بندی تصویر


۱.

مقایسه دو روش طبقه بندی حداکثر احتمال و شبکه عصبی مصنوعی در استخراج نقشه کاربری اراضی مطالعه موردی: حوزه سد ایلام(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه عصبی مصنوعی کاربری اراضی طبقه بندی تصویر حداکثر احتمال ضریب کاپا

حوزه های تخصصی:
تعداد بازدید : ۵۵۳۲ تعداد دانلود : ۲۴۲۳
یکی از ضروری ترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشه های کاربری اراضی می باشد. داده های ماهواره ای، به جهت ارایه ی اطلاعات به هنگام و رقومی، تنوع اشکال و امکان پردازش در تهیه ی نقشه های کاربری اراضی از اهمیت بالایی برخوردارند. از سویی دیگر در سال های اخیر به طور وسیع و گسترده جهت طبقه بندی تصاویر ماهواره ای از روش های طبقه بندی پیشرفته از قبیل شبکه های عصبی مصنوعی، مجموعه های فازی و سیستم های هوشمند استفاده می شود. هدف اصلی این تحقیق مقایسه ی دو روش مختلف جهت طبقه بندی کاربری اراضی با استفاده از تصاویر ASTER می باشد. بدین منظور با استفاده از تصویر ماهواره ای ASTER و دو الگوریتم طبقه بندی نظارت شده شامل حداکثر احتمال و شبکه ی عصبی مصنوعی، نقشه ی کاربری اراضی تهیه گردید. در طبقه بندی با استفاده از الگوریتم شبکه ی عصبی از یک شبکه ی پرسپترون با یک لایه ی پنهان و 14 نرون ورودی، 9 نرون میانی و 6 نرون خروجی استفاده شده است که تعداد نرون های ورودی همان تعداد باندهای تصویر ماهواره ای ASTER و تعداد نرون های خروجی همان تعداد کلاس های نقشه ی کاربری اراضی می-باشد. برای آموزش شبکه نیز از الگوریتم انتشار برگشتی استفاده شده است. نتایج حاصل از ارزیابی دقت این دو روش با استفاده از تعیین ضریب کاپا نشان داده است که الگوریتم شبکه ی عصبی با ضریب 86/0 نسبت به الگوریتم حداکثر احتمال با ضریب 69/0 از دقت بیشتری برخوردار است. نتایج این مطالعه همچنین نشان می دهد الگوریتم های سنتی طبقه-بندی مانند روش های آماری به خاطر انعطاف پذیری پایین و انواع پارامتریک آن مانند روش حداکثر احتمال به خاطر وابستگی به مدل آمار گوسی نمی توانند نتایج بهینه ای، در صورت نرمال نبودن داده های آموزشی فراهم آورند در حالیکه دلیل موفقیت الگوریتم شبکه ی عصبی مصنوعی در سنجش از دور این است که می تواند داده هایی با منابع مختلف را با هم تلفیق نماید.
۲.

ارزیابی کارایی چهار روش شبکه ی عصبی مصنوعی در تهیه ی نقشه ی پوشش/کاربری اراضی با استفاده از تصاویر ماهواره ای ETM+ مطالعه موردی: سه منطقه دویرج، مهران و سرابله(مقاله علمی وزارت علوم)

کلیدواژه‌ها: کاربری اراضی طبقه بندی تصویر شبکه عصبی پرسپترون تابع پایه شعاعی شبکه عصبی کوهونن

حوزه های تخصصی:
تعداد بازدید : ۱۲۹۰ تعداد دانلود : ۷۹۷
نقشه هایپوشش/کاربریاراضیحاصلازتصاویرماهواره اینقشمهمیدرارزیابی هایمنطقه ایوملیپوشش/کاربریاراضیایفامی کنند.طیّ سال های گذشته، کاربردهای زیادی از روش های طبقه بندی شبکه عصبی مصنوعی برای طبقه بندی پوشش/کاربری اراضی در منابع گزارش شده است، اما مطالعات معدودی، مقایسه ی آنها با هم را ارزیابی نموده اند. در این مطالعه، ابتدا تصحیحات هندسی بر روی داده های+ ETM صورت گرفت. سپس با بازدیدهای میدانی، طبقات مختلف پوشش/کاربری اراضی تعریف و نمونه های آموزشی انتخاب گردید. در این مطالعه، هدف اصلی مقایسه ی چهار روش شبکه ی عصبی مصنوعی برای طبقه بندی پوشش سطح زمین در سه منطقه ی مهران (مرکز استان ایلام)، دویرج (جنوب استان ایلام) و سرابله (شمال استان ایلام) با شرایط اقلیمی متفاوت می باشد. در این مطالعه، از روش های شبکه ی عصبی مصنوعی آرتمپ فازی، تابع پایه شعاعی، کوهونن و پرسپترون چند لایه استفاده شده است. نتایج ارزیابی دقت تصاویر طبقه بندی شده نشان داد که روش طبقه بندی آرتمپ فازی با دقت کل متوسط 84/9۴ و ضریب کاپای متوسط 93/0 درصد دارای بیشترین دقت نسبت به سایر روش های بررسی شده می باشد. اختلاف دقت کل متوسط در این روش نسبت به روش تابع پرسپترون 44/11 و اختلاف ضریب کاپا متوسط 18/0 درصد، نسبت به روش کوهونن به ترتیب 3/17 و 23/0 درصد و نسبت به روش پایه شعاعی 01/31 و 36/0 درصد می باشد. در این تحقیق، بالاترین دقت طبقه بندی مربوط به طبقه بندی شبکه ی عصبی مصنوعی آرتمپ فازی بود. بنابراین این مطالعه کارایی و قابلیت روش شبکه ی عصبی مصنوعی آرتمپ فازی را در طبقه بندی بهتر تصاویر سنجش از دور اثبات می نماید.
۳.

به کارگیری روش های تخمین بعد ذاتی در استخراج ویژگی های بدست آمده از تصاویر راداری، ماهواره ای و لیدار به منظورشناسایی عوارض خاص شهری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ساختمان راه طبقه بندی تصویر پوشش گیاهی تخمین بعد ذاتی

حوزه های تخصصی:
تعداد بازدید : ۸۳۹ تعداد دانلود : ۴۰۴
امروزه ترکیب دادهها و تصاویری که از منابع مختلف سنجش از دوری به دست آمدهاند، به عنوان راهحلی بهینه به منظور استخراج اطلاعات بیشتر مطرح است، چرا که این دادهها با دید وسیع خود، رقومی بودن، تهیه بصورت دورهای، اطلاعات مختلفی را در اختیار محققین قرار میدهند. در این راستا، سنجندههای غیرفعال نوری به صورت گسترده در نگاشت ساختارهای افقی مورد استفاده قرار میگیرند. دادههای راداری نیز با توجه به این که غالباً مستقل از شرایط جوی و به صورت شبانهروزی امکان جمعآوری دارند و نیز برخی ساختارهای زمینی و اهداف مصنوعی پاسخ ویژهای در فرکانس راداری دارند، تواناییهای تصاویر نوری را تکمیل میکنند. همچنین دادههای هوابرد لیدار نیز میتوانند اندازهگیریهای نمونهای با دقت بسیار بالا از ساختارهای قائم در اختیار قرار دهند. در نتیجه، استفاده همزمان دادههای نوری، راداری و لیدار میتواند اطلاعات بیشتری در کاربردهای متنوع فراهم نماید. در این تحقیق، با بکارگیری همزمان این سه دسته داده سعی بر شناسایی عوارض خاص شهری به شکل بهینه نمودیم. در این راستا، با بکارگیری و تولید توصیفگرهای مختلف (57 توصیفگر) و با استفاده از روشهای استخراج ویژگی (شامل PCA و ICA) و تخمین ابعاد ذاتی دادهها (شاملSML و NWHFC)، فضای بهینهای برای طبقهبندی نظارت شده ایجاد شد. پس از انجام طبقهبندی (روش K-NN) با استفاده از نتایج بدست آمده، توصیفگرهای (لایههای اطلاعاتی) تولید شده برای شناسایی عوارض خاص شهری شامل ساختمانها، راهها و پوشش گیاهی براساس دقت کلاسهبندی بدست آمده و گروهبندی شدند. نتایج عددی بدست آمده حاکی از کارایی بالای رویه پیشنهادی و نیز روشهای بکارگرفته شده تخمین بعد ذاتی و استخراج ویژگی است.