مطالب مرتبط با کلیدواژه

تابع پایه شعاعی


۱.

ارزیابی کارایی چهار روش شبکه ی عصبی مصنوعی در تهیه ی نقشه ی پوشش/کاربری اراضی با استفاده از تصاویر ماهواره ای ETM+ مطالعه موردی: سه منطقه دویرج، مهران و سرابله(مقاله علمی وزارت علوم)

کلیدواژه‌ها: کاربری اراضی طبقه بندی تصویر شبکه عصبی پرسپترون تابع پایه شعاعی شبکه عصبی کوهونن

حوزه‌های تخصصی:
تعداد بازدید : ۱۲۹۵ تعداد دانلود : ۸۰۰
نقشه هایپوشش/کاربریاراضیحاصلازتصاویرماهواره اینقشمهمیدرارزیابی هایمنطقه ایوملیپوشش/کاربریاراضیایفامی کنند.طیّ سال های گذشته، کاربردهای زیادی از روش های طبقه بندی شبکه عصبی مصنوعی برای طبقه بندی پوشش/کاربری اراضی در منابع گزارش شده است، اما مطالعات معدودی، مقایسه ی آنها با هم را ارزیابی نموده اند. در این مطالعه، ابتدا تصحیحات هندسی بر روی داده های+ ETM صورت گرفت. سپس با بازدیدهای میدانی، طبقات مختلف پوشش/کاربری اراضی تعریف و نمونه های آموزشی انتخاب گردید. در این مطالعه، هدف اصلی مقایسه ی چهار روش شبکه ی عصبی مصنوعی برای طبقه بندی پوشش سطح زمین در سه منطقه ی مهران (مرکز استان ایلام)، دویرج (جنوب استان ایلام) و سرابله (شمال استان ایلام) با شرایط اقلیمی متفاوت می باشد. در این مطالعه، از روش های شبکه ی عصبی مصنوعی آرتمپ فازی، تابع پایه شعاعی، کوهونن و پرسپترون چند لایه استفاده شده است. نتایج ارزیابی دقت تصاویر طبقه بندی شده نشان داد که روش طبقه بندی آرتمپ فازی با دقت کل متوسط 84/9۴ و ضریب کاپای متوسط 93/0 درصد دارای بیشترین دقت نسبت به سایر روش های بررسی شده می باشد. اختلاف دقت کل متوسط در این روش نسبت به روش تابع پرسپترون 44/11 و اختلاف ضریب کاپا متوسط 18/0 درصد، نسبت به روش کوهونن به ترتیب 3/17 و 23/0 درصد و نسبت به روش پایه شعاعی 01/31 و 36/0 درصد می باشد. در این تحقیق، بالاترین دقت طبقه بندی مربوط به طبقه بندی شبکه ی عصبی مصنوعی آرتمپ فازی بود. بنابراین این مطالعه کارایی و قابلیت روش شبکه ی عصبی مصنوعی آرتمپ فازی را در طبقه بندی بهتر تصاویر سنجش از دور اثبات می نماید.
۲.

الگوریتم پیشنهادی برای انتخاب ویژگی های مناسب به منظور پیش بینی شاخص بورس اوراق بهادار تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی شاخص بورس الگوریتم انتخاب ویژگی تابع پایه شعاعی رگرسیون بردارپشتیبان شبکه عصبی عمیق

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۴ تعداد دانلود : ۱۶۷
عملکرد یک مدل هوشمند تا حد زیادی به انتخاب مرتبط ترین و تأثیرگذارترین متغیرهای ورودی و کمترین پیچیدگی مدل یادگیری بستگی دارد. از این رو در مطالعه حاضر، برای پیش بینی روزانه شاخص کل بورس اوراق بهادار تهران بر اساس متغیرهای مالی و اقتصادی، ابتدا اقدام به اولویت بندی ویژگی ها با الگوریتم MID نموده، سپس از 4 مدل مختلف شبکه عصبی (MLP, SVR, RBF, DNN) که از مهم ترین و بدیع ترین مدل های پیش بینی می باشند، استفاده می شود. با توجه به نتایج بدست آمده از تحلیل مدل های مورد بررسی، در نهایت الگوریتمی برای انتخاب ویژگی های مناسب برای پیش بینی شاخص، تحت عنوانISF _MID پیشنهاد شده و با تعدادی از روش های مشابه، مقایسه می گردد. داده های مورد استفاده در این پژوهش به صورت روزانه در بازه زمانی 28/10/1392 تا 30/5/1397 جمع آوری شده اند. مدل های مورد بررسی در مرحله پیاده سازی با روش اعتبارسنجی متقابل K-fold مورد ارزیابی قرار گرفتند. همچنین از معیارهای MAE، MSE و RMSE برای ازریابی عملکرد مدل های مذکور استفاده می شود. نتایج نشان می دهد که با روش پیشنهادی، می توان با 7 ویژگی انتخابی به دقت بالایی در پیش بینی روزانه شاخص کل بورس اوراق بهادار تهران دست یافت.
۳.

انتخاب ویژگی های مناسب برای مدل پیش بینی شاخص بورس اوراق بهادار تهران بر مبنای تکنیک کاهش ابعاد(مقاله علمی وزارت علوم)

کلیدواژه‌ها: تکنیک کاهش ابعاد شبکه عصبی عمیق تابع پایه شعاعی تحلیل مؤلفه های اصلی

حوزه‌های تخصصی:
تعداد بازدید : ۱۶۱ تعداد دانلود : ۱۶۳
هدف: هدف اصلی این پژوهش، انتخاب مدل مناسب برای پیش بینی روزانه شاخص کل بورس اوراق بهادار تهران است. در این راستا، از تکنیک های کاهش ابعاد، جهت انتخاب ویژگی های مؤثر و معرف، به منظور افزایش دقت مدل انتخابی استفاده شده است. روش: با توجه به اینکه کاهش ابعاد می تواند با دو روش متفاوت (انتخاب و استخراج ویژگی) اجرا شود، در این پژوهش، هر دو روش برای انتخاب ویژگی های مناسب مدل پیش بینی به کار برده شده است؛ به طوری که برای انتخاب ویژگی ها از الگوریتم MID و برای استخراج ویژگی ها از الگوریتم PCA استفاده می شود. در این راستا، پس از جمع آوری 34 ویژگی مالی و اقتصادی مؤثر بر بازار سهام، به اولویت بندی ویژگی ها با الگوریتم MID اقدام شده است، سپس با مقایسه عملکرد دو مدل مختلف شبکه عصبی با نام های  RBFو DNN که به ترتیب از مهم ترین و بدیع ترین مدل ها هستند، مدل مناسب انتخاب شده است. در ادامه با استفاده از دو نوع تکنیک کاهش ابعاد، دقت پیش بینی مدل انتخابی بررسی شده و روش مناسب برای انتخاب ویژگی های ورودی مدل پیش بینی شناسایی شده است. یافته ها: با تحلیل نتایج به دست آمده مشخص شد که مدل RBF در پیش بینی روزانه شاخص کل بورس اوراق بهادار تهران دقت بیشتری دارد. همچنین با مقایسه عملکرد دو نوع تکنیک کاهش ابعاد، مشخص شد که الگوریتم MID نسبت به الگوریتم PCA در انتخاب متغیرهای ورودی مدل RBF نتیجه بهتری را ارائه کرده است. بنابراین با توجه به اولویت بندی ویژگی ها با الگوریتم MID و الگوی تغییر مقدار خطا با افزایش تعداد ویژگی ها در مدل RBF، الگوریتم ISF_MID، برای انتخاب ویژگی های مناسب مدل پیش بینی شاخص بورس پیشنهاد شد. با استفاده از این الگوریتم می توان با کمترین تعداد ویژگی، بیشترین دقت را در پیش بینی شاخص بورس به دست آورد. نتیجه گیری: روش پیشنهاد شده در این پژوهش جهت شناسایی، اولویت بندی و انتخاب ویژگی های مناسب برای مدل پیش بینی، با توجه به سادگی و اثربخشی استفاده از آن، می تواند در حوزه های مختلف مدل سازی، از جمله بازار سرمایه، بازار ارز و مانند آن ها مفید واقع شود.