مطالب مرتبط با کلیدواژه

پیش بینی تقاضای درمان


۱.

معرفی یک سیستم پیش بینی مناسب برای برآورد تقاضای درمان در بیمارستان امام رضا(ع) ارومیه(مقاله علمی وزارت علوم)

کلیدواژه‌ها: پیش بینی تقاضای درمان بخش اورژانس مدل اتورگرسیو میانگین متحرک مدل شبکه های عصبی

حوزه های تخصصی:
تعداد بازدید : ۷۷ تعداد دانلود : ۶۷
بیمارستان ها وظیفه حفظ سلامت افراد را بر عهده داشته و قسمت اعظم هزینه های سلامت را به خود اختصاص می دهند. شواهد حاکی از آن است که چشم انداز وسیعی برای ارتقاء و اعتلای منابع بیمارستان ها (مالی و انسانی) وجود دارد. آگاهی و اطلاع از مقدار تقاضای آینده، مدیریت بهینه این منابع و کیفیت خدمات رسانی در حوزه سلامت را تا حد زیادی تضمین می نماید. هدف اصلی این مطالعه بررسی مدل های خطی (ARIMA) و غیرخطی (شبکه عصبیMLP) در پیش بینی تقاضای تعداد افراد بیمار جهت بستری در بیمارستان امام رضا (ع) ارومیه، در بازه های زمانی ساعتی، روزانه، هفتگی و ماهانه و همچنین به تفکیک بخش های مختلف بیمارستان است. نتایج این پژوهش بیانگر آن است که مدل غیرخطی شبکه ی عصبی مصنوعی مبتنی بر الگوریتم MLP، دارای عملکرد بهتری در پیش بینی تقاضای درمان (در دوره نمونه) بوده و قادر است پیش بینی های دقیق تری نسبت به مدل ARIMA ارائه دهد. مدل شبکه عصبی MLP  با متوسط درصد خطای 96/24% نسبت به مدل ARIMA با متوسط درصد خطای کل 73/26% دارای قدرت پیش بینی بالایی می باشد. همچنین نتایج پیش بینی های بخش کودکان و نوزادان نشان می دهد که مدل خطی ARMA دارای قدرت پیش بینی بالاتری نسبت به مدل غیرخطی شبکه عصبی MLP می باشد که دلیل این ناسازگاری با فرضیه های تحقیق را می توان در واریانس پایین داده های این بخش جستجو کرد.