مطالب مرتبط با کلیدواژه

مدل های یادگیری ماشین


۱.

مقایسه دقت مدل های پیش بینی بحران مالی و تأثیر آن بر ابزارهای مدیریت سود(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بحران مالی پیش بینی شده مدل های آماری مدل های یادگیری ماشین مدیریت سودِ اقلام تعهدی مدیریت سود فعالیت های واقعی

حوزه‌های تخصصی:
تعداد بازدید : ۲۷۰ تعداد دانلود : ۱۷۰
هدف اصلی این پژوهش بررسی دقت مدل های پیش بینی بحران مالی و رویکردهای مدیریت سود است. بدین منظور پس از مقایسه مدل های پیش بینی بحران مالی و انتخاب مدل برتر، به تجزیه و تحلیل ارتباط آن با ابزارهای مدیریت سود پرداخته شد. برای پیش بینی بحران مالی، مدل های یادگیری ماشین و مدل های آماری 312 شرکت پذیرفته شده در بورس اوراق بهادار تهران طی سال های 1385 تا 1394 با یکدیگر مقایسه شدند و به کمک آزمون مقایسه میانگین، مشخص شد که از نظر پیش بینی بحران مالی، مدل های یادگیری ماشین نسبت به مدل های آماری دقت بیشتری دارند. سپس رابطه بهترین مدل پیش بینی بحران مالی به دست آمده از مرحله قبل و ابزارهای مدیریت سود با استفاده از رگرسیون چندگانه خطی بررسی شد و مشخص گردید که بحران مالی پیش بینی شده با مدیریت سود جریان های نقدی عملیاتی، رابطه معکوس و معنادار دارد و با مدیریت سود هزینه های تولیدی و مدیریت سود اقلام تعهدی، رابطه مستقیم و معناداری برقرار می کند.
۲.

کارایی مدل های آماری والگوهای یادگیری ماشین در پیش بینی گزارشگری مالی متقلبانه(مقاله علمی وزارت علوم)

کلیدواژه‌ها: گزارشگری مالی متقلبانه مدل های آماری مدل های یادگیری ماشین

حوزه‌های تخصصی:
تعداد بازدید : ۴۹۸ تعداد دانلود : ۴۳۳
وجود تقلب و تداوم آن در صورتهای مالی،آثارگسترده ای بر سلامت مالی شرکت ها و توسعه پایدار  بازار سرمایه  دارد. روش های متداول حسابرسی در پیشگیری و کشف صورت های مالی متقلبانه، نتوانستهاندباتقلب هایحسابدارینوظهور به دلیل فقداندانشموردنیازداده کاوی،پیچیدگی تقلب های جدید و عدم تجربهکافیحسابرسان کناربیایند. در این پژوهش، انواع مدل های آماری و یادگیریماشین در دست یابی به الگویی با کارایی بالا در پیش بینی گزارشگری مالی متقلبانهاستفاده شد. از 20 متغیر در قالب الگوی پنج ضلعی تقلب با تاکید بر ساختار کنترل های داخلی در 166 شرکت هایفعال در بورس اوراق بهادار تهران طی سالهای 1388 الی 1397 و مقایسه بین مدل های مورد بررسی،باکمکآزم ونمقایس ه نسبت ها،نشان می دهدکهبه لحاظ آماریمدل هاییادگیریماش یندرپیش بینیگزارشگری مالی متقلبانه نس بتب ه مدل هایآماری،کارایی و دقتبیشتری دارند. ترکیب الگوریتم درخت تصمیم گیری CHAID، C5 و C&R بالاترین دقت در پیش بینی گزارشگری مالی متقلبانه را با دقت بالای 61/92 درصد در پیش بینی تقلب نشان می دهد. روش های داده کاوی بر پایه مدل های یادگیری ماشین و بویژه ترکیب آنها بطور موفقیت آمیزی  در پیش بینی و کشف تقلب در صورت های مالی می تواند مورد استفاده قرار گیرد. The existence and persistence of fraud in financial statements can have adverse impact on the sustainable development of the capital markets as well as the financial health of companies. Using conventional audit procedures which is applied to prevent and detect fraudulent financial statements, auditors fail to cope with emerging accounting frauds. This can be due to many reasons, such as the lack of the required data mining knowledge, the complexity and infrequency of financial frauds, and the auditors without much experience. Accordingly, due to importance of identifying fraud in capital market, different types of statistical and machine learning based models were examined to establish a rigorous and effective model to detect financial statements fraud in this study. For this purpose, 20 variables in the form of the pentagonal fraud with emphasis on the structure of internal controls (pressure, opportunity, justification, capability, arrogance and internal control structure) were used from 166 manufacturing companies listed on Tehran stock exchange over the period 2009-2018. Based on the statistical indices obtained, machine learning based models exhibited higher predictive ability and accuracy than statistical based models in predicting financial statement fraud. The results also showed that C5, CHAID and C&R decision tree models were highly accurate in prediction of fraudulent datapresented in fnancial statement. Accordingly, the efficacy of combination of CHAID, C5 and C&R decision tree algorithms which had the highest accuracy in prediction of fraudulent financial reporting was examined. The high accuracy of 92.61% of the combination of these algorithms in fraud prediction shows that data mining methods based on machine learning models and especially their combination can be used successfully in fnancial statement fraud prediction.
۳.

مقایسه مدل های یادگیری جمعی برای پیش بینی رتبه کشوری دانش آموزان در کنکور سراسری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: یادگیری جمعی پیش بینی رتبه کشوری کنکور سراسری مدل های یادگیری ماشین

حوزه‌های تخصصی:
تعداد بازدید : ۱۷ تعداد دانلود : ۱۳
هدف: این پژوهش به بررسی و مقایسه مدل های یادگیری جمعی می پردازد تا بتواند به پیش بینی دقیق تری از رتبه کشوری دانش آموزان در کنکور سراسری دست یابد. هدف اصلی این پژوهش شناسایی مدل های بهینه ای است که با تحلیل داده های آزمون های آمادگی که پیش از کنکور برگزار می شود، بتوانند رتبه دانش آموزان را با بیشترین دقت پیش بینی کنند. مدل های شناسایی شده می توانند به مشاوران تحصیلی کمک کنند تا با ارائه توصیه های دقیق تر و مبتنی بر داده، به دانش آموزان در انتخاب مسیر تحصیلی و برنامه ریزی آموزشی کمک کنند. روش: در این پژوهش، به منظور تحلیل دقیق عملکرد دانش آموزان، از نرم افزار Octoparse برای جمع آوری داده های مرتبط با آزمون قلمچی کانون فرهنگی آموزش استفاده شد. مجموعه داده ها اطلاعات مهمی بودند، نظیر میانگین نمره آزمون، رتبه های کشوری و منطقه ای، رشته های تحصیلی و دانشگاه های قبولی دانش آموزان. همچنین در این مطالعه، چهار مدل پیشرفته یادگیری جمعی شامل XGBoost، LightGBM، CatBoost و Random Forest به منظور مقایسه و ارزیابی عملکرد در پیش بینی رتبه کشوری دانش آموزان انتخاب شد. به منظور سنجش دقت و کارایی این مدل ها، از معیارهای متنوعی مانند میانگین مربعات خطا، جذر میانگین مربعات خطا، ضریب تعیین و همچنین زمان های آموزش و پیش بینی استفاده شد. داده های جمع آوری شده، به دو بخش آموزشی و آزمایشی تقسیم شدند تا مدل ها بتوانند به بهترین شکل آموزش ببینند و ارزیابی شوند. به منظور دستیابی به عملکرد بهینه، از روش جست وجوی شبکه ای بهره گرفته شد که به ما اجازه می دهد پارامترهای مدل ها را به طور دقیق تنظیم کنیم و بهترین نتایج ممکن را به دست آوریم. یافته ها: نتایج این مطالعه نشان دهنده عملکرد برجسته مدل های XGBoost و LightGBM در پیش بینی رتبه کشوری دانش آموزان بود. مدل XGBoost به عنوان دقیق ترین گزینه شناخته شد؛ زیرا پیش بینی هایی ارائه داد که به مقادیر واقعی بسیار نزدیک بود و کمترین میزان خطا را داشت. این دقت بالا باعث شد که XGBoost به عنوان مدل برتر در این پژوهش شناخته شود. مدل LightGBM نیز با نتایج بسیار مشابه XGBoost، به عنوان یکی دیگر از گزینه های برجسته، برای پیش بینی رتبه کشوری انتخاب شد. این مدل به خاطر سرعت و دقت زیاد، مورد توجه قرار گرفت و به عنوان ابزاری مؤثر در این زمینه شناخته شد. مدل Random Forest نیز با دقتی بهتر نسبت به CatBoost عمل کرد؛ هرچند زمان بیشتری برای آموزش و پیش بینی نیاز داشت. در مقابل، مدل CatBoost به عنوان ضعیف ترین گزینه شناخته شد؛ زیرا در مقایسه با سایر مدل ها دقت کمتری داشت و مقادیر خطای بیشتری ارائه می کرد؛ هرچند سرعت پیش بینی آن بیشتر بود. به نظر می رسد که این مدل به بهبود نیاز دارد تا بتواند با دیگر مدل های موفق رقابت کند. نتیجه گیری: یافته ها نشان می دهد که مدل های XGBoost و LightGBM به عنوان دو ابزار مؤثر در یادگیری جمعی، عملکرد بسیار خوبی برای پیش بینی رتبه دانش آموزان در آزمون های سراسری دارند. این مدل ها با دقت بالا و عملکرد بهینه، می توانند به عنوان راهنماهایی ارزشمند در سیستم های آموزشی عمل کنند و به بهبود فرایندهای یادگیری کمک کنند. این مدل ها قادرند دانش آموزانی را که ممکن است در مسیر تحصیلی خود با چالش مواجه شوند، شناسایی کنند و به طراحی برنامه های یادگیری مؤثرتر یاری دهند. علاوه براین، نتایج این پژوهش می تواند به رهبران مدارس و سیاست گذاران برنامه های آموزشی کمک کند تا تصمیم های هوشمندانه تری در جهتِ ارتقای عدالت آموزشی اتخاذ کنند؛ به طوری که فرصت های یادگیری برابر، برای همه دانش آموزان فراهم شود. در آینده، استفاده از مدل های پیشرفته تر یادگیری عمیق و اضافه کردن داده های مرتبط، مانند عوامل اجتماعی، اقتصادی و نوع مدارس، می تواند به بهبود دقت پیش بینی ها منجر شود. همچنین، ترکیب مدل های مختلف یادگیری ماشین برای ایجاد مدل های ترکیبی می تواند به افزایش دقت و کاهش خطاهای پیش بینی کمک کند. به طور کلی، این پژوهش می تواند نقطه عطفی برای توسعه سیستم های پیش بینی و تصمیم گیری در حوزه آموزش در کشور شمرده شود و زمینه ساز بهبودهای چشمگیر در این زمینه باشد.