ارزیابی قابلیت های ترکیب الگوریتم های مجموعه های راف و ژنتیک برای داده کاوی و استخراج قوانین مرتبط با آب مصرفی در شهر تهران(مقاله علمی وزارت علوم)
حوزه های تخصصی:
مدیریت و برنامه ریزی آب شهری، به ویژه در کلان شهر ها، اهمیت بسیار زیادی دارد. توسعة مناطق شهری، تبدیل شهرها به کلان شهر و افزایش پیچیدگی عوامل تأثیرگذار در مصرف آب در شهر ها سبب دشواری مدیریت مصرف، تأمین و توزیع آب شده است. بنابراین، استخراج قوانین نقش مهمی در کشف الگو های حاکم بر مجموعة داده و کاهش پیچیدگی ها دارد. اصل نظریة مجموعه های راف، که پائولاک در دهة 80 مطرح کرد، روشی توانمند و انعطاف پذیر در پردازش داده های دارای عدم قطعیت شمرده می شود و در این تحقیق، به منظور استخراج قوانین حاکم بر مصرف آب، به کار رفته است. در این تحقیق، از روش ترکیب الگوریتم های مجموعه های راف و ژنتیک از روش های داده کاوی، برای بهبود استخراج قوانین و طبقه بندی داده های آب مصرفی، با کاربری مسکونی در شهر تهران به منزلة منطقة مورد مطالعه استفاده شده است. داده های مورد استفاده در این تحقیق شامل داده های اجتماعی اقتصادی، محیطی، اقلیمی و فنی مدیریتی می شوند. این داده ها به دو زیرمجموعه، شامل 60 %با هدف آموزش و 40 %به قصد ارزیابی نتایج، تقسیم شدند. نتایج نشان می دهند که تلفیق الگوریتم های ژنتیک و مجموعه های راف کارآیی بالاتری برای استخراج مؤثر قوانین از داده های مصرف آب شهر تهران را دارند. دقت طبقه بندی مجموعه دادة آزمون، ازطریق قوانین استخراج شده از مجموعه های راف، 77 %بود. پس از بهینه سازی قوانین با استفاده از الگوریتم ژنتیک در مجموعه های راف، دقت طبقه بندی در نسل ششم، با سرعت همگرایی متوسط، به 88 %و در نسل دهم، به 92 %افزایش یافت. براساس قوانین استخراج شده، عوامل مؤثر در مصرف سالیانة آب به ترتیب میزان تأثیرگذاری، جمعیت ساکن، آب بها، تراکم جمعیت در واحد سطح، بعد خانوار، موقعیت مکانی (عرض جغرافیایی)، تحصیلات ساکنان و سرانة فضای سبز به شمار می روند.