مطالب مرتبط با کلیدواژه

استخراج قوانین


۱.

کاربرد تئوری مجموعه های راف برای پیش بینی قیمت سهام (مطالعه موردی: بانک صادرات ایران)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: گسسته سازی داده ها استخراج قوانین پیش بینی قیمت سهام تئوری مجموعه های راف مشخصه های شرطی و مشخصه های تصمیم

حوزه های تخصصی:
تعداد بازدید : ۹۵۱ تعداد دانلود : ۶۰۷
در این پژوهش روشی مبتنی بر تئوری مجموعه های راف و با استفاده از شاخص های تحلیل تکنیکی جهت پیش بینی قیمت سهام ارائه شده است. تئوری مجموعه های راف دارای مزایای متعددی است که مهمترین مزیت آن در تحلیل داده ها این است که به هیچگونه اطلاعات اضافی اولیه در مورد داده ها نیاز ندارد. در مدل پیشنهادی، تعدادی از شاخص های تکنیکال برای داده های مربوط به بانک صادرات ایران در طول یک سال محاسبه و به عنوان مشخصه های شرطی در جدول تصمیم مورد استفاده قرار گرفته و نوسان قیمت سهام در روز بعد نیز به عنوان مشخصه تصمیم انتخاب می شود. لازم به ذکر است که با استفاده از آنالیز ماتریس همبستگی، شاخص های با بیشترین همبستگی با مشخصه تصمیم انتخاب می گردند. سپس با استفاده از تئوری مجموعه های راف و ترکیب روش های مختلف گسسته سازی داده ها و تولید بی زائده بر اساس داده های یادگیری، قواعد پیش بینی استخراج و قدرت پیش بینی روش های مختلف بر اساس داده های کنترل محاسبه شد. در این مطالعه داده های شش سال متوالی (یعنی 05/05/1388 لغایت 24/04/1394 بانک صادرات مورد استفاده قرار گرفته است. بررسی قدرت پیش بینی این روش و مقایسه بازده حاصل از استفاده از آن و روش خرید و نگهداری، مزیت استفاده از مجموعه های راف را آشکار می نماید. مقایسه نتایج حاصل از اعمال روش ها بر روی داده های مربوطه نشان می دهد که بازده حاصل از استراتژی خرید و نگهداری 33 ریال و بازده حاصل از مدل 182 ریال به ازای هر سهم می باشد. همچنین استفاده از داده های سال های مختلف با روند قیمتی متفاوت به عنوان ورودی مدل و دستیابی به نتایج رضایت بخش، می تواند دلیلی امیدوارکننده برای استفاده از این روش و توسعه آن در پیش بینی قیمت سهام باشد.
۲.

ارزیابی قابلیت های ترکیب الگوریتم های مجموعه های راف و ژنتیک برای داده کاوی و استخراج قوانین مرتبط با آب مصرفی در شهر تهران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: استخراج قوانین مجموعة راف الگوریتم ژنتیک داده کاوی مکانی

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی آب و هواشناسی
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۵۵۵ تعداد دانلود : ۳۵۸
مدیریت و برنامه ریزی آب شهری، به ویژه در کلان شهر ها، اهمیت بسیار زیادی دارد. توسعة مناطق شهری، تبدیل شهرها به کلان شهر و افزایش پیچیدگی عوامل تأثیرگذار در مصرف آب در شهر ها سبب دشواری مدیریت مصرف، تأمین و توزیع آب شده است. بنابراین، استخراج قوانین نقش مهمی در کشف الگو های حاکم بر مجموعة داده و کاهش پیچیدگی ها دارد. اصل نظریة مجموعه های راف، که پائولاک در دهة 80 مطرح کرد، روشی توانمند و انعطاف پذیر در پردازش داده های دارای عدم قطعیت شمرده می شود و در این تحقیق، به منظور استخراج قوانین حاکم بر مصرف آب، به کار رفته است. در این تحقیق، از روش ترکیب الگوریتم های مجموعه های راف و ژنتیک از روش های داده کاوی، برای بهبود استخراج قوانین و طبقه بندی داده های آب مصرفی، با کاربری مسکونی در شهر تهران به منزلة منطقة مورد مطالعه استفاده شده است. داده های مورد استفاده در این تحقیق شامل داده های اجتماعی اقتصادی، محیطی، اقلیمی و فنی مدیریتی می شوند. این داده ها به دو زیرمجموعه، شامل 60 %با هدف آموزش و 40 %به قصد ارزیابی نتایج، تقسیم شدند. نتایج نشان می دهند که تلفیق الگوریتم های ژنتیک و مجموعه های راف کارآیی بالاتری برای استخراج مؤثر قوانین از داده های مصرف آب شهر تهران را دارند. دقت طبقه بندی مجموعه دادة آزمون، ازطریق قوانین استخراج شده از مجموعه های راف، 77 %بود. پس از بهینه سازی قوانین با استفاده از الگوریتم ژنتیک در مجموعه های راف، دقت طبقه بندی در نسل ششم، با سرعت همگرایی متوسط، به 88 %و در نسل دهم، به 92 %افزایش یافت. براساس قوانین استخراج شده، عوامل مؤثر در مصرف سالیانة آب به ترتیب میزان تأثیرگذاری، جمعیت ساکن، آب بها، تراکم جمعیت در واحد سطح، بعد خانوار، موقعیت مکانی (عرض جغرافیایی)، تحصیلات ساکنان و سرانة فضای سبز به شمار می روند.