مطالب مرتبط با کلیدواژه

نروفازی


۱.

مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)(مقاله علمی وزارت علوم)

کلیدواژه‌ها: رگرسیون چند متغیره شبکه عصبی مصنوعی نروفازی خصوصیات خاک

حوزه‌های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی جغرافیای خاکها
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۲۹۹۲ تعداد دانلود : ۱۵۱۶
با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگیهای خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت اندازه گیری شدند. سپس کل داده ها به دو سری داده، شامل سری آموزش (80% داده ها) و سری ارزیابی (20% داده ها) تقسیم گردید. به منظور پیش بینی خصوصیات مذکور، از مدل های نروفازی، شبکه عصبی مصنوعی و رگرسیون چند متغیره استفاده گردید. نتایج ارزیابی مدل ها بر اساس شاخص های ریشه مربعات خطا، میانگین خطا، خطای استاندارد نسبی و ضریب تبیین نشان داد که مدل نروفازی دارای بالاترین دقت در پیش بینی ویژگیهای خاک را دارا میباشد بطوریکه این مدل به میزان 34، 10، 78 و 5 درصد دقت پیش بینی ویژگیهای FC، PWP، CEC و Bd را به ترتیب، نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکه های عصبی مصنوعی نسبت به معادلات رگرسیونی کارائی بهتر داشته است.
۲.

بررسی روش های مختلف برای ایجاد توابع انتقالی خاکهای بخشی از مناطق مرطوب شمال ایران(مقاله علمی وزارت علوم)

کلیدواژه‌ها: شبکه های عصبی مصنوعی رگرسیون چند متغیره توابع انتقالی نروفازی

حوزه‌های تخصصی:
تعداد بازدید : ۱۷۰۰ تعداد دانلود : ۹۳۵
تخمین پارامترهای دیریافت خاک با استفاده از اطلاعات موجود خاک، توابع انتقالی نامیده میشود. جهت توسعه توابع انتقالی میتوان از مدل های رگرسیون چند متغیره، شبکه عصبی مصنوعی و نروفازی استفاده کرد. بنابراین در این مطالعه به منظور مقایسه مدل های مذکور، 153 نمونه جمع آوری شده از ناحیه شمالی شهرستان رشت مورد آزمایش قرار گرفته و درصد شن، سیلت، رس و کربن آلی به عنوان ویژگیهای زودیافت و ظرفیت تبادل کاتیونی به عنوان ویژگی دیریافت اندازه گیری شدند. سپس کل داده ها به دو سری داده، شامل سری آموزش (80% داده ها) و سری ارزیابی (20% داده ها) تقسیم گردید. نتایج ارزیابی نشان داد که مدل نروفازی بر اساس شاخص های ریشه مربعات خطا، میانگین خطا و ضریب تبیین به ترتیب 73/0، 07/0- و 66/0 دارای بالاترین دقت در پیش بینی ظرفیت تبادل کاتیونی خاک میباشد. همچنین این مدل بر اساس شاخص درصد کاهش ریشه مربعات خطا به میزان 14 درصد دقت پیش بینی ویژگی CEC را نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکه های عصبی مصنوعی پس انتشار، پایه شعاعی و آبشاری به ترتیب نسبت به معادلات رگرسیونی کارائی بهتری داشته اند.
۳.

مدلسازی هوشمند منفرد(پرسپترون چند لایه) و ترکیبی (نروفازی) تخریب جنگل (محدوده: شهرستان ساری)(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: مدلسازی هوشمند تخریب جنگل نروفازی پرسپترون چند لایه

حوزه‌های تخصصی:
تعداد بازدید : ۴۲۶ تعداد دانلود : ۷۴۰
روش های کلاسیک یا روشهای سخت بر دقیق بودن محاسبات، پایه گذاری شده اند درحالیکه دنیای واقعی بر نادقیق بودن مرزها و عدم قطعیت ها استوار است که بیشتر با روش های محاسبات نرم مطابقت دارد، که این روش ها نیز به تنهایی نقاط ضعف و قوتی دارند و برای رفع آنها تئوری پیوند زنی مطرح شد که با عنوان سیستم های ترکیبی هوشمند شناخته می شوند. در این تئوری دو یا چند روش هوشمند با یکدیگر ترکیب می شود تا کاستی ها و نواقص روش های منفرد رفع یا تعدیل گردد. در این مطالعه، تخریب جنگل با استفاده از شبکه عصبی پرسپترون و روش ترکیبی عصبی-فازی مدل سازی شده است. برای اینکار از تصاویر سنسور TM ماهواره لندست 5 سال 1999 و سنسور OLI متعلق به لندست 8 برای سال 2017 استفاده شد. از مناطق جنگلی تخریب شده و جنگل بدون تخریب در 200 نقطه نمونه برداری شد. سپس 7 فاکتور تخریب جنگل شامل: فاصله ازعوارضی همچون (شهر-رودخانه-روستا-دریا-جاده)، ارتفاع و شیب برای 200 نقطه محاسبه شد. برای ارزیابی عملکرد مدل ها از میانگین مربعات خطای استفاده شد که برای شبکه پرسپترون با سه الگوریتم Levenberg-Marquardt, Bayesian Regularization, Scaled Conjugate Gradient به ترتیب 5 0.053، 4 0.070 و 8 0.090 بدست آمد. MSE برای مدل عصبی-فازی با الگوریتم بهینه سازی و روش ترکیبی به ترتیب 0 0.019 و 0.0102 محاسبه شد. تحلیل نتایج حاکی از عملکرد مطلوب مدل نروفازی در کاهش خطا و افزایش تعمیم پذیری می باشد. مدل نروفازی با تکیه بر قاعده عدم قطعیت شرایطی را ایجاد کرده که به واقعیت شباهت بیشتری داشته و نسبت به مدل پرسپترون در انتخاب داده ی مناسب موفق تر بوده است.
۴.

مقایسه روشهای هیدرولوژیکی احتساب کننده رطوبت خاک و نروفازی در شبیه سازی بارش- رواناب (مطالعه موردی: حوضه آبخیز زولاچای)(مقاله پژوهشی دانشگاه آزاد)

کلیدواژه‌ها: حوزه آبخیز زولاچای فرآیند بارش-رواناب مدل احتساب کننده رطوبت خاک نروفازی واسنجی

حوزه‌های تخصصی:
تعداد بازدید : ۲۴۷ تعداد دانلود : ۲۲۲
شبیه سازی هیدرولوژیکی حوزه های آبخیز، برای تخمین دبی اوج و حجم سیلاب حاصل ازبارندگی ها، روند یابی سیلاب در رودخانه ها و تحلیل هیدروگراف سیلاب ها صورت می گیرد. هدف از این تحقیق، کاربرد مدل های احتساب کننده رطوبت خاک (HMS SMA) و نروفازی در برآورد دبی متوسط روزانه، حجم رواناب و تحلیل هیدروگراف ناشی از شبیه سازی فرآیند بارش-رواناب در حوزه آبخیز زولاچای می باشد. در این تحقیق پس از مدل سازی حوزه آبخیز در الحاقیه HEC-GeoHMS، مدل به برنامه HEC-HMS وارد و با تخمین پارامترهای مدل احتساب کننده رطوبت خاک، شبیه سازی بارش-رواناب در سایر مقیاس ها انجام شد. با بررسی مقیاس های زمانی واسنجی و بهینه سازی پارامترهای مدل HMS SMA می توان گفت که مقیاس زمانی ماهانه در شبیه سازی بارش-رواناب دقیق تر از مقیاس های زمانی سالانه، نیم سالانه و فصلی عمل می کند، همچنین مقیاس زمانی فصلی می تواند بهتر از سایر مقیاس های زمانی دبی اوج را تخمین بزند. مقایسه واسنجی و بهینه سازی روشهای احتساب کننده رطوبت خاک و نروفازی نشان داد روش فازی با بهترین ضرایب آماری (ضریب کارایی ناش-ساتکلیف 76/0 و مجموع مربعات خطای 18/0)، دقیق تر از روش SMA، شبیه سازی بارش-رواناب را انجام می دهد.