کاربرد الگوریتم های فراابتکاری در پیش بینی درماندگی مالی با استفاده از متغیرهای مالی و غیرمالی درون شرکتی و اقتصادی (الگوریتم های بهینه سازی م لخ و کلونی مورچگان)(مقاله علمی وزارت علوم)
منبع:
اقتصاد مالی سال ۱۷ بهار ۱۴۰۲ شماره ۱ (پیاپی ۶۲)
104 - 71
حوزه های تخصصی:
هدف این پژوهش ارزیابی توانمندی الگوریتم فراابتکاری بهینه سازی ملخ (GOA) در پیش بینی دقیق تر درماندگی مالی با استفاده از متغیرهای درون شرکتی (مالی و غیرمالی) و اقتصادی می باشد. روش این پژوهش بهبود عملکرد مدل پایه شبکه عصبی مصنوعی پرسپترون چندلایه (ANN-MLP) از طریق ایجاد مدل ترکیبی مبتنی بر الگوریتم ملخ (MLP-GOA) و مقایسه توانمندی آن با عملکرد مدل ترکیبی مبتنی بر الگوریتم کلونی مورچگان (MLP-ACO) می باشد. جامعه آماری پژوهش شرکت های فعال در بازار بورس اوراق بهادار تهران طی یک دوره 7 ساله (از 1391 تا 1397) شامل 476 شرکت بوده که در نهایت با حذف سیستماتیک، 289 شرکت حایز شرایط (شامل 2023 مشاهده سال- شرکت) مورد بررسی و غربالگری قرار گرفته است. آزمون فرضیه ها برمبنای معیارهای ارزیابی ماتریس اغتشاش و منحنی ROC انجام شد. یافته ها توانمندی مدل پایه ANN-MLP در پیش بینی درماندگی مالی با استفاده از متغیرهای مالی و غیرمالی را اثبات نمود و علاوه بر آن، الگوریتم-های فراابتکاری از طریق مدل های MLP-GOA و MLP-ACO عملکرد مدل پایه شبکه عصبی را بهبود دادند. دقت م دل MLP-GOA برای سال وقوع درماندگی تا دو سال قبل از آن به ترتیب 3/97%، 5/94% و 3/91% بوده است که از دقت مدل پایه و مدل MLP-ACO نیز بیشتر بوده است. همچنین نتایج نشان داد که با ورود متغیرهای اقتصادی، اگر چه توانمندی کلیه مدل های پایه و ترکیبی به نحو معنی داری افزایش یافته است، لیکن درماندگی مالی بیشتر متاثر از متغیرهای درون شرکتی بوده و در واقع اثر متغیرهای اقتصادی بر این رخداد، قبلاً از طریق اثر بر رویدادهای مالی ثبت شده در سیستم حسابداری، لحاظ شده است.