فائزه فروتن

فائزه فروتن

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

Sentiment Analysis User Comments On E-commerce Online Sale Websites

تعداد بازدید : ۳۰۹ تعداد دانلود : ۷۰
E-commerce websites, based on their structural ontology, provides access to a wide range of options and the ability to deal directly with manufacturers to receive cheaper products and services as well as receiving comments and ideas of the users on the provided products and services. This is a valuable source of information, which includes a large number of user reviews. It is difficult to check the bulk of the comments published manually and non-automatically. Hence, sentiment analysis is an automated and relatively new field of study, which extracts and analyzes people's attitudes and emotions from the context of the comments. The primary objective of this research is to analyze the content of users' comments on online sale e-commerce websites of handcraft products. Sentiment analysis techniques were used at sentence level and machine learning approach.  First, the pre-processing steps and TF-IDF method were implemented on the comments text. Next, the comments text were classified into two groups of products and services comments using Support Vector Machine (SVM) algorithm with 99.2% accuracy. Finally, the sentiment of comments was classified into three groups of positive, negative and neutral using XGBoost algorithm. The results showed, 95.23% and 95.12% accuracies for classification of sentiments in comments about products and services, respectively.
۲.

آزمون آشوب و پیش بینی قیمت های آتی نفت خام(مقاله علمی وزارت علوم)

کلید واژه ها: شبکه های عصبی مصنوعی GARCH مدل های غیر خطی آشوب قیمت نفت خام ARMA

حوزه های تخصصی:
تعداد بازدید : ۱۸۷۷ تعداد دانلود : ۸۶۲
این مقاله به امکان سنجی وجود آشوب در ساختار سیستم مولد قیمت نفت خام شاخصWTI طی دوره 4 آوریل 1983 تا 13 ژانویه 2003 می پردازد. به این منظور از تخمین نمای لیاپانوف و بعد همبستگی به عنوان آزمون های مستقیم آشوب و آزمون های BDS و شبکه عصبی جهت بررسی غیر خطی بودن ساختار سیستم استفاده شده است. نتایج تخمین نمای لیاپانوف و بعد همبستگی، وجود آشوب در سری زمانی را تایید کرده و تخمین آماره BDS و شبکه عصبی، بر غیرخطی بودن سیستم مولد قیمت روزانه نفت اشاره داشتند. در بخش پایانی یک مدل شبکه عصبی مصنوعی برای پیش بینی قیمت های آتی نفت خام طراحی و با نتایج پیش بینی مدل خطی ARMA و غیر خطی GARCH مقایسه شد. نتایج حاصل نشان داد مدل شبکه عصبی مورد استفاده نسبت به دو مدل ARMA و GARCH از قدرت پیش بینی بهتری برخوردار است.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان