شاهین رامتین نیا

شاهین رامتین نیا

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

بهینه سازی سبد سهام با استفاده از الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری (TLBO) در بورس اوراق بهادار تهران(مقاله علمی وزارت علوم)

کلید واژه ها: ارزش در معرض ریسک مشروط الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری بهینه سازی سبد سهام روش های فراابتکاری مدل میانگین واریانس

حوزه های تخصصی:
تعداد بازدید : ۳۹۸ تعداد دانلود : ۱۵۵
افزایش بازده و کاهش ریسک، همواره یکی از مهم ترین مسائلی است که سرمایه گذاران در بازارهای مالی به آن توجه می کنند. با وجود سابقه طولانی بهینه سازی سبد سهام، الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری که در سال 2010 معرفی شده است، یکی از کاراترین روش های فرا ابتکاری، برای حل مسائل بهینه سازی است. در این پژوهش، سعی شده است مسئله بهینه سازی سبد سهام، در چارچوب مدل معرفی شده مارکوویتز، با استفاده از الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری حل شود. بدین منظور، از بازدهی های روزانه 20 شرکت پذیرفته شده در بورس اوراق بهادار تهران که دارای نقدینگی بالا در بازه زمانی 1391 تا 1395 بودند، استفاده شده است. نتایج به دست آمده از این تحقیق نشان می دهد الگوریتم بهینه سازی مبتنی بر آموزش و یادگیری، نسبت به سایر الگوریتم ها برای یافتن مرز کارا و بهینه سازی سبد سهام، عملکرد بهتری دارد.
۲.

بهینه سازی سبد سهام با استفاده از الگوریتم جست وجوی ارگانیسم های هم زیست(مقاله علمی وزارت علوم)

کلید واژه ها: الگوریتم جستجوی ارگانیسم های هم زیست بهینه سازی سبد سهام روش های فراابتکاری محدودیت کاردینالیتی

حوزه های تخصصی:
تعداد بازدید : ۲۸۱ تعداد دانلود : ۱۶۵
بهینه سازی سبد سهام یکی از مهم ترین موضوعاتِ تصمیم گیری برای شرکت های فعال در بازار سرمایه است. هنگامی که وضعیت و محدودیت های دنیای واقعی نظیر محدودیت سرمایه گذاری در هریک از سهام ها و نیز محدودیت تعداد سهام های موجود در سبد سهام در نظر گرفته می شوند، مسئله بهینه سازی سبد سهام به راحتی حل نمی شود، از این رو استفاده از شیوه های فراابتکاری مد نظر قرار می گیرد. هدف اصلی از پژوهش حاضر، حل مسئله بهینه سازی سبد سهام با استفاده از نوعی الگوریتم فراابتکاری کاملاً جدید و نوظهور به نام الگوریتم جست وجوی ارگانیسم های هم زیست با در نظر گرفتن محدودیت های دنیای واقعی در تشکیل سبد سهام است. این الگوریتم با الهام از روابط هم زیستی موجود در اکوسیستم های گوناگونی که در طبیعت وجود دارد، در سال 2014 معرفی شده است. در نهایت روش و مدل مورد استفاده در این پژوهش با داده های واقعی حل شد و نتایج آن تجزیه و تحلیل شدند. نتایج این پژوهش نشان می دهد، الگوریتم جست وجوی ارگانیسم های هم زیست در بهینه سازی سبد سهام، عملکرد موفقی داشته و توانسته است به نحو مطلوبی با محدودیت های واقعی بازار تعامل کند

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان