بهبود کارایی پیش بینی بهره وری با رویکرد طراحی آزمایشات تاگوچی (مورد مطالعه : صنایع غذایی ایران)(مقاله علمی وزارت علوم)
حوزه های تخصصی:
پیش بینی بهره وری عاملی بسیار مهم در طراحی استراتژی های یک سازمان است. یکی از روش های پیش بینی بهره وری، استفاده از شبکه های عصبی مصنوعی است که به علت دارا بودن پارامترهای قابل تنظیم، به کارگیری آن نیاز به تجربه و مهارت زیادی دارد و اغلب از آزمایش و خطا برای دستیابی به سطوح مناسب این پارامترها استفاده می شود. این مقاله، الگویی 7 مرحله ای جهت انتخاب مقادیر مناسب پارامترهای قابل تنظیم شبکه عصبی ارائه می دهد تا با به کارگیری طراحی آزمایش های تاگوچی کارایی در پیش بینی بهره وری بهبودمی یابد. به کارگیری این روش در پیش بینی بهره وری صنایع غذایی ایرن، سطوح بهینه پارامترها را که منجر به مطلوب ترین پیش بینی در شبکه عصبی می شود، بدین شرح ارائه می دهد: تعداد لایه های پنهان: 2 لایه، تعداد نورون هر لایه پنهان: 7 نورون، نرخ یادگیری: 9/0 و تعداد ورودی های شبکه عصبی: شاخص های بهره وری با درجه همبستگی بیشتر از 85/0؛ که از بین عوامل فوق، عامل تعداد لایه های پنهان با سهم مشارکت 18/71% در نتیجه آزمایش ها، مهم ترین عامل طراحی شبکه عصبی در پیش بینی بهره وری صنایع غذایی ایران است. در نهایت، نتیجه کلی تحقیق نشان داد که به کارگیری این الگو علاوه بر کاهش زمان و هزینه های پیش بینی، امکان انتخاب استراتژی های رقابتی فراهم می شود. به علاوه این روش با تعیین سهم مشارکت هر یک از پارامتهای قابل تنظیم در نتایج آزمایش، تصمیم گیرندگان را در میزان دقت و توجهی که باید به هر یک از این پارامترها داشته باشند، یاری می رساند.