علی اکبرزاده

علی اکبرزاده

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۲ مورد از کل ۲ مورد.
۱.

مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)(مقاله علمی وزارت علوم)

کلید واژه ها: رگرسیون چند متغیره شبکه عصبی مصنوعی نروفازی خصوصیات خاک

حوزه های تخصصی:
  1. حوزه‌های تخصصی جغرافیا جغرافیای طبیعی جغرافیای خاکها
  2. حوزه‌های تخصصی جغرافیا فنون جغرافیایی روش های کمی در جغرافیا
تعداد بازدید : ۲۹۶۶ تعداد دانلود : ۱۴۷۹
با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگیهای خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده میشود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگیهای زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگیهای دیریافت اندازه گیری شدند. سپس کل داده ها به دو سری داده، شامل سری آموزش (80% داده ها) و سری ارزیابی (20% داده ها) تقسیم گردید. به منظور پیش بینی خصوصیات مذکور، از مدل های نروفازی، شبکه عصبی مصنوعی و رگرسیون چند متغیره استفاده گردید. نتایج ارزیابی مدل ها بر اساس شاخص های ریشه مربعات خطا، میانگین خطا، خطای استاندارد نسبی و ضریب تبیین نشان داد که مدل نروفازی دارای بالاترین دقت در پیش بینی ویژگیهای خاک را دارا میباشد بطوریکه این مدل به میزان 34، 10، 78 و 5 درصد دقت پیش بینی ویژگیهای FC، PWP، CEC و Bd را به ترتیب، نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکه های عصبی مصنوعی نسبت به معادلات رگرسیونی کارائی بهتر داشته است.
۲.

بررسی روش های مختلف برای ایجاد توابع انتقالی خاکهای بخشی از مناطق مرطوب شمال ایران(مقاله علمی وزارت علوم)

کلید واژه ها: شبکه های عصبی مصنوعی رگرسیون چند متغیره توابع انتقالی نروفازی

حوزه های تخصصی:
تعداد بازدید : ۱۶۶۴ تعداد دانلود : ۸۹۶
تخمین پارامترهای دیریافت خاک با استفاده از اطلاعات موجود خاک، توابع انتقالی نامیده میشود. جهت توسعه توابع انتقالی میتوان از مدل های رگرسیون چند متغیره، شبکه عصبی مصنوعی و نروفازی استفاده کرد. بنابراین در این مطالعه به منظور مقایسه مدل های مذکور، 153 نمونه جمع آوری شده از ناحیه شمالی شهرستان رشت مورد آزمایش قرار گرفته و درصد شن، سیلت، رس و کربن آلی به عنوان ویژگیهای زودیافت و ظرفیت تبادل کاتیونی به عنوان ویژگی دیریافت اندازه گیری شدند. سپس کل داده ها به دو سری داده، شامل سری آموزش (80% داده ها) و سری ارزیابی (20% داده ها) تقسیم گردید. نتایج ارزیابی نشان داد که مدل نروفازی بر اساس شاخص های ریشه مربعات خطا، میانگین خطا و ضریب تبیین به ترتیب 73/0، 07/0- و 66/0 دارای بالاترین دقت در پیش بینی ظرفیت تبادل کاتیونی خاک میباشد. همچنین این مدل بر اساس شاخص درصد کاهش ریشه مربعات خطا به میزان 14 درصد دقت پیش بینی ویژگی CEC را نسبت به روش رگرسیون خطی چندگانه افزایش داده است. بعد از این مدل، شبکه های عصبی مصنوعی پس انتشار، پایه شعاعی و آبشاری به ترتیب نسبت به معادلات رگرسیونی کارائی بهتری داشته اند.

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان