مطالب مرتبط با کلیدواژه

الگوریتم LARS


۱.

بررسی مؤلفه های تأثیرگذار بر پیش بینی سود نقدی سهام با استفاده از مدل های ترکیبی: مورد صنعت شیمیایی(مقاله علمی وزارت علوم)

کلیدواژه‌ها: سود سهام انتخاب مؤلفه الگوریتم PSO الگوریتم LARS الگوریتم SVR

حوزه‌های تخصصی:
تعداد بازدید : ۱۵۲۶ تعداد دانلود : ۶۴۶
از آنجا که پیش بینی سود نقدی شرکت ها یکی از منابع اطلاعاتی با ارزش برای سرمایه گذاران و دیگر افراد ذینفع است، پژوهش حاضر تلاش می کند مدل هایی برای پیش بینی متغیرهای تأثیرگذار بر سود نقدی سهام پیشنهاد کند. برای این کار از اطلاعات شرکت های شیمیایی پذیرفته شده در بورس تهران بین سال های 1385 تا 1389 استفاده شده است. متغیرهای مستقل این تحقیق نسبت های حسابداری و متغیر وابسته سود نقدی سهام است. چارچوب مدل، ترکیبی از الگوریتم های PSO-SVR و PSO-LARS است. الگوریتم PSO، ترکیب بهینه ای از متغیرها که بر پیش بینی سود نقدی تأثیر گذارند را شناسایی می کند. سپس داده های مربوط به متغیرهای انتخاب شده توسط PSO به طور جداگانه به الگوریتم های SVR و LARS وارد می شوند و این الگوریتم ها را آموزش می دهند. در ادامه الگوریتم های SVR و LARS با داده های ارزیابی آزموده می شوند و به این ترتیب می توان خطای پیش بینی را اندازه گیری و روش ها را با هم مقایسه کرد. نتایج این پژوهش نشان می دهد ترکیب الگوریتم PSO با الگوریتم SVR یا ترکیب PSO-LARS در مقایسه با استفاده از الگوریتم های LARS و SVR به تنهایی می تواند پیش بینی بهتری از عوامل تأثیرگذار مورد نظر داشته باشد. ضمن این که در مقایسه دو روش ترکیبی PSO-LARS و PSO-SVR، خطای پیش بینی PSO-SVR کمتر است.
۲.

ارزیابی تأثیر محتوای اطلاعات حسابداری تورمی در مقایسه با اطلاعات تاریخی در طراحی مدل های پیش بینی ورشکستگی مبتنی بر رویکردهای سنتی و فرا ابتکاری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: الگوریتم LARS الگوریتم SVM شاخص عمومی قیمت ها نسبت مالی ورشکستگی

حوزه‌های تخصصی:
تعداد بازدید : ۷۷ تعداد دانلود : ۱۰۶
 پیش بینی ورشکستگی بنگاه های اقتصادی یکی از شاخه های رشته مالی است که در تحقیقات اخیر بیشتر مورد توجه قرار گرفته است به گونه ای که الگوهای ورشکستگی توسعه یافته است. در عمده پژوهش های صورت گرفته در حوزه پیش بینی عملکرد مالی شرکت ها و به طور خاص، ورشکستگی، تنها به پیش بینی و یا مقایسه توان پیش بینی مدل ها با استفاده از اطلاعات تاریخی صورت های مالی پرداخته شده است. از آنجا که در ایران بیشتر از اطلاعات تاریخی حسابداری استفاده شده است هدف اصلی این پژوهش لحاظ نمودن آثار تورم بر روی متغیرهای ورودی در طراحی مدل پیش بینی ورشکستگی می باشد. لذا متغیرها در دو گروه نسبت های مالی تعدیل شده و تاریخی، در طراحی دو مدل متفاوت دسته بندی شدند، سپس با استفاده از الگوریتم لارس نسبت های گویاتر تمایز بین شرکت های ورشکسته و غیرورشکسته، انتخاب گردیدند و در نهایت با به کارگیری آزمون رگرسیون لاجیت و الگوریتم های ماشین بردار پشتیبان و نیو بیزین مدل نهایی پیش بینی کننده ورشکستگی شکل گرفت. بدین منظور داده های50 شرکت پذیرفته شده در بورس تهران براساس ماده 141 قانون تجارت برای حداقل یکسال ورشکستگی را تجربه کرده بودند، به کار گرفته شد. نتایج این پژوهش اثبات نمود که نسبت های مالی تعدیل شده بر مبنای شاخص قیمت ها پیش بینی کننده مناسب تری برای ورشکستگی شرکت ها می باشند همچنین، مدل طراحی شده توسط الگوریتم ماشین بردار پشتیبان با دقت 4/99% و برازش بالاتر نسبت به مدل های دیگر، پیش بینی کننده مناسبی برای ورشکستگی شرکت ها می باشد.