استفاده بهینه از سفره آب های زیرزمینی با استفاده از مدل FNN-LM هوش مصنوعی (مطالعه موردی: دشت خوزستان)
حوزه های تخصصی:
مقدمه و بیان مسئله: استفاده از هوش عصبی در پیش بینی متغیرهای منابع آبی از جمله آب زیرزمینی بطور گسترده رو به افزایش است. هدف: این تحقیق از طریق هوش مصنوعی و مدل FNN-LM چندین هدف را دنبال می کند که شامل تعیین پارامترهای موثر بر نوسانات سطح آب زیرزمینی در دشت خوزستان و همچنین بررسی تاثیر مکانی و زمانی پارامترهای سطح آب از طریق داده های زمانی 10 ساله و سپس مدلسازی نوسانات سطح آب زیرزمینی در پیزومترهای منتخب در دشت مورد مطالعه می باشد. روش: استفاده از هوش مصنوعی و روش مدل FNN-LM بود و در انتها با تغییر درصدی یک ماه آخر داده های ورودی در مدل، اقدام به ایجاد شرایط فرضی گردید و با توجه به مدلهای شبکه عصبی بدست آمده به پیش بینی نوسانات سطح آب زیرزمینی در این شرایط فرضی پرداخته شد. یافته ها: تاثیر پارامتر تخلیه از چاهها به مراتب بیشتر از تاثیر پارامتر میزان بارندگی می باشد، بطوریکه پیش بینی شرایط ترسالی و خشکسالی که فقط در اثر تغییر میزان بارندگی می باشد. نتیجه گیری: با استفاده از مدلهای ایجاد شده شبکه عصبی برای هر چاه مشاهده ای و استفاده از مقبولترین روش مدلهای ژئواستاتیستیکی پیش بینی مکانی و زمانی مناسبی از سطح آبهای زیرزمینی صورت گرفت. بهترین مدلسازی نوسانات سطح آب با مدل FNN-LM از طریق انتخاب پارامترهای مناسب و با قابل قبول ترین تاخیر زمانی بدست آمد.کلید واژه ها: هوش مصنوعی، سطح آب زیرزمینی، مدل FNN-LM، دشت خوزستان.