کاربرد روش های یادگیری ماشینی در حوزه طراحی محیط مصنوع(مقاله علمی وزارت علوم)
منبع:
گفتمان طراحی شهری دوره ۵ تابستان ۱۴۰۳ شماره ۲
116 - 128
حوزه های تخصصی:
اهداف: امروزه استفاده از هوش مصنوعی رشد چشمگیری داشته، و به عنوان یک حوزه نوین در حال پیشرفت است. هدف اصلی این پژوهش، شناخت ظرفیت های هوش مصنوعی در پیشبرد فرآیند طراحی و اجرا در محیط مصنوع است. هدف کاربردی پژوهش، توسعه و کاربردی سازی مهمترین دستاوردهای یادگیری ماشینی و در حوزه طراحی است.
روش ها: روش تحقیق اصلی پژوهش «فراتحلیل» در پارادایم «آزادپژوهی» با رویکرد انتقادی و طراحی مبنا است که با استفاده از تکنیک های پهنانگر، حوزه کلی دانشی این حوزه را بررسی می کند. سپس به منظور تثبیت اشراف به ادبیات موضوع، از طریق جستوجو در سه پایگاه های معتبر دانشی این حوزه، نسبت به جمع آوری مقالات مرتبط به یادگیری ماشین در حوزه های روش های یادگیری بدون نظارت، یادگیری نیمه نظارتی و یادگیری تقویتی اقدام شده؛ مهمترین ظرفیت ها و کاستی ها، و نقاط قوت و ضعف مورد نقد و بررسی قرار می گیرد.
یافته ها: یافته های کمی حاصل از داده های ترکیب شده بیانگر آن است که یادگیری ماشینی تحت نظارت و یادگیری عمیق هدایت شده، می تواند بهترین گزینه برای توصیه در آینده طراحی باشد. در حالی که فرآیند یادگیری در یادگیری عمیق تدریجی و کندتر است، یادگیری ماشینی تحت نظارت در مرحله آزمون و تست سریع تر عمل می کند.
نتیجه گیری: نتایج پژوهش تاکید دارد که یادگیری ماشینی تحت نظارت، بهترین گزینه برای پیش بینی پاسخ ها در فرآیند طراحی است اما در صورتی که علاوه بر پیش بینی، موضوع خلاقیت در طراحی مورد نظر باشد، یادگیری عمیق کارآمدتر است.