ارائه رویکردهای مبتنی بر یادگیری ماشین سنتی و رگرسیونی روی پیش بینی عملکرد دانش آموزان مؤسسات عالی(مقاله علمی وزارت علوم)
منبع:
رویکردی نو بر آموزش کودکان سال ۵ زمستان ۱۴۰۲ شماره ۴
31 - 44
حوزه های تخصصی:
مقدمه: پیش بینی عملکرد دانش آموزان به یک خواسته مبرم در اکثر نهادها و مؤسسات آموزشی و آموزشی عالی تبدیل شدهاست. این مسئله برای کمک به دانشآموزان در معرض خطر و اطمینان از حفظ آنها، ارائه منابع و تجربیات عالی یادگیری و بهبود رتبه و شهرت مؤسسات ضروری است. با این حال، دستیابی به آن برای مؤسسات استارت آپی که سوابق کوچکی برای تجزیه و تحلیل دارند، ممکن است دشوار باشد. هدف از پژوهش حاضر ارائه رویکردهای مبتنی بر یادگیری ماشین سنتی و رگرسیونی روی پیش بینی عملکرد دانش آموزان بود. روش: پژوهش حاضر از نوع پژوهش های کیفی بوده و از لحاظ هدف کاربردی و از لحاظ روش از نوع پژوهش های تحلیلی آزمایشی بود. در این پژوهش از روش های رگرسیون خطی، درخت تصمیم، جنگل تصادفی و ماشین بردار پشتیبانی استفاده شد. در این بخش پس از معرفی محیط پیاده سازی، پارامترهای شبیه سازی معرفی شد. در ادامه نیز با معرفی معیارهای ارزیابی کارایی روش پیشنهادی بر اساس معیارهای ارزیابی موصوف بررسی و یافته ها با دیگر روش های مشابه مقایسه شد. که برای این مقایسات از رویکرد یادگیری عمیق مبتنی بر شبکه کانولوشنی عمیق و دیگر رویکردهای یادگیری عمیق استفاده می شود. در این تحقیق همچنین از مجموعه داده های مدرسه پسرانه دکتر هشت رودی که جزو 10 مؤسسه برتر در تهران می باشد استفاده شد. نتیجه گیری: نتایج اصلی این مطالعه کارایی جنگل تصادفی را در آموزش داده های کوچک و در تولید نرخ آزمون دقیق نشانمیدهد.