مطالب مرتبط با کلیدواژه

Network Security


۱.

Implementation of Intrusion detection and prevention with Deep Learning in Cloud Computing(مقاله علمی وزارت علوم)

کلیدواژه‌ها: IDPS (Intrusion Detection and Prevention System) Network Security

حوزه های تخصصی:
تعداد بازدید : ۱۴۷ تعداد دانلود : ۸۹
An administrator is employed to identify network security breaches in their organizations by using a Network Intrusion Detection and Prevention System (NIDPS), which is presented in this paper that can detect and preventing a wide range of well-known network attacks. It is now more important than ever to recognize different cyber-attacks and network abnormalities that build an effective intrusion detection system plays a crucial role in today's security. NSL-KDD benchmark data set is extensively used in literature, although it was created over a decade ago and will not reflect current network traffic and low-footprint attacks. Canadian Institute of Cyber security introduced a new data set, the CICIDS2017 network data set, which solved the NSL-KDD problem. With our approach, we can apply a variety of machine learning techniques like linear regression, Random Forest and ID3. The efficient IDPS is indeed implemented and tested in a network environment utilizing several machine learning methods. A model that simulates an IDS-IPS system by predicting whether a stream of network data is malicious or benign is our objective. An Enhanced ID3 is proposed in this study to identify abnormalities in network activity and classify them. For benchmark purposes, we also develop an auto encoder network, PCA, and K-Means Clustering. On CICIDS2017, a standard dataset for network intrusion, we apply Self-Taught Learning (STL), which is a deep learning approach. To compare, we looked at things like memory, Recall, Accuracy, and Precision.
۲.

Comparative Study of Data Transfer in SDN Network Architecture in IoT(مقاله علمی وزارت علوم)

تعداد بازدید : ۵۵ تعداد دانلود : ۴۲
The Internet of Things (IoT) has gained significant attention in recent years, with the proliferation of connected devices and the need for efficient data transfer in IoT networks. Software-Defined Networking (SDN) has emerged as a promising solution to address the challenges of network management and optimization in IoT environments. This paper presents a comparative study of data transfer in SDN network architecture in IoT, focusing on the benefits, challenges, and future perspectives of integrating SDN and IoT. Given the crucial role of security in IoT, this paper seeks to access a secure architecture for computer networks to provide a solution for security challenges. To achieve this, a comparative analysis of two SDN architectures is conducted in this research. We have utilized the Miniedit software, which serves as a laboratory for software-defined networks, to implement and simulate these SDN architectures. The results of this study are based on a comparison of the two secure architectures using DITG tables. This comparative study offers valuable insights into the integration of SDN in IoT network architecture and its influence on data transfer.