مطالب مرتبط با کلیدواژه

الگوریتم فرابتکاری


۱.

تحلیلی جامع بر رشد بهره وری نیروی کار در ایران با بکارگیری الگوریتم های فرا ابتکاری(مقاله علمی وزارت علوم)

کلیدواژه‌ها: بهره وری نیروی کار شبکه های عصبی الگوریتم فرابتکاری

حوزه های تخصصی:
تعداد بازدید : ۲۷۲ تعداد دانلود : ۲۰۶
این پژوهش به بررسی شناسایی عوامل موثر بر رشد بهره وری و چیستی این موضوع در مسیر نیل به رشد و توسعه اقتصادی می پردازد. طیف وسیعی از متغیرهای موثر بر رشد بهره وری در مطالعات مختلف معرفی ولی در عمل به دلیل محدودیت ابزارها و موضوعاتی مانند درونزایی متغیرهای اقتصادی و تاثیر ناخواسته تغییر در این متغیرها، لازم است عوامل اساسی موثر در رشد بهره وری شناسایی و سیاستگذار براین عوامل به شکل مشخص تمرکز نماید. با استفاده از منطق انتخاب ویژگی( الگوریتم ژنتیک دو هدفه) عوامل موثر بر رشد بهره وری نیروی کار شناسایی و سپس با استفاده از شبکه های عصبی مدل اتتخابی را برای دوره زمانی 1370-1395تخمین و در نهایت با استفاده از شاخص گارسن، تحلیل حساسیت عوامل موثر بر رشد بهره وری را به انجام رسانده ایم. براساس نتایج حاصل از منطق انتخاب ویژگی برای مدل بهره وری نیروی کار از میان بیست متغیر مورد استفاده، دوازده متغیر از مدل حذف شدند. مدل شبکه عصبی دارای قدرت پیش بینی  99/0  و حداقل خطا مدل 0017/0 به عنوان بهترین خروجی انتخاب شد. براساس نتایج شاخص گارسن در میان آن ها  سرمایه انسانی، دستمزد نیروی کارو کنترل فساد بیشترین تاثیرات را بر رشد بهره وری نیروی کار دارند و متغیر ها  حاکمیت قانون، تحقیق و توسعه و انباشت سرمایه فیزیکی کمترین تاثیر را بر رشد بهره وری نیروی کار دارند. Clearly, the main factor in the growth of production, living standards and human welfare, is the growth of productivity, and given the importance of the discussion of productivity in economies and its weak position in explaining the growth of production in Iran, this study examines what This issue is addressed. In order to achieve economic growth and development, it is necessary to identify the factors affecting productivity growth in the Iranian economy. A wide range of variables affecting productivity growth are introduced in various studies. However, in practice, due to the limitation of tools and issues such as endogenous economic variables and the unintended impact of change in these variables, it is necessary to consider the key factors influencing interest rate growth. Identify a problem and focus the policymaker on these factors in a specific way. Therefore, this study intends to first identify the factors affecting productivity growth by using feature selection logic, basis on Non-Dominated Sorting Genetic Algorithm (NSGA-II) then estimate the selective model using Artificial Neural Networks(ANN) for the period(1370-1395) and finally using the Garsen index to measure the sensitivity analysis of factors affecting labour productivity  and capital productivity growth.Based on the results of the feature selection logic for the labor productivity model out of the twenty variables used, twelve variables were excluded from the model.The neural network model with predictive power 0/99 and minimum error 0/0017 of the model was selected as the best output Among the results of the Garsen Index, among them, human capital, labor wages and corruption control had the greatest impact on labor productivity growth and the variables of rule of law, R&D and physical capital accumulation had the least impact on labor productivity growth productivity Keywords: Laborproductivity,Neural Networks,, meta-heuristic.