مطالب مرتبط با کلیدواژه

Transfer Learning


۱.

Classification of Lung Nodule Using Hybridized Deep Feature Technique(مقاله علمی وزارت علوم)

کلیدواژه‌ها: CNN Transfer Learning GLCM SVM PCA

حوزه های تخصصی:
تعداد بازدید : ۲۸۸ تعداد دانلود : ۹۲
Deep learning techniques have become very popular among Artificial Intelligence (AI) techniques in many areas of life. Among many types of deep learning techniques, Convolutional Neural Networks (CNN) can be useful in image classification applications. In this work, a hybridized approach has been followed to classify lung nodule as benign or malignant. This will help in early detection of lung cancer and help in the life expectancy of lung cancer patients thereby reducing the mortality rate by this deadly disease scourging the world. The hybridization has been carried out between handcrafted features and deep features. The machine learning algorithms such as SVM and Logistic Regression have been used to classify the nodules based on the features. The dimensionality reduction technique, Principle Component Analysis (PCA) has been introduced to improve the performance of hybridized features with SVM. The experiments have been carried out with 14 different methods. It has been found that GLCM + VGG19 + PCA + SVM outperformed all other models with an accuracy of 94.93%, sensitivity of 90.9%, specificity of 97.36% and precision of 95.44%. The F1 score was found to be 0.93 and the AUC was 0.9843. The False Positive Rate was found to be 2.637% and False Negative Rate was 9.09%.
۲.

Efficient NetB3 for Enhanced Lung Cancer Detection: Histopathological Image Study with Augmentation(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Lung cancer Convolutional Neural Network (CNN) Histopathological Images Transfer Learning Lung Cancer Detection

حوزه های تخصصی:
تعداد بازدید : ۹۰ تعداد دانلود : ۷۷
Cancer is an abnormal cell growth that occurs uncontrollably within the human body and has the potential to spread to other organs. One of the primary causes of mortality and morbidity for people is cancer, particularly lung cancer. Lung cancer is one of the non-communicable diseases (NCDs), causing 71% of all deaths globally, and is the second most common cancer diagnosed worldwide. The effectiveness of treatment and the survival rate of cancer patients can be significantly increased by early and exact cancer detection. An important factor in specifying the type of cancer is the histopathological diagnosis. In this study, we present a Simple Convolutional Neural Network (CNN) and EfficientNetB3 architecture that is both straightforward and efficient for accurately classifying lung cancer from medical images. EfficientnetB3 emerged as the best-performing classifier, acquiring a trustworthy level of precision, recall, and F1 score, with a remarkable accuracy of 100%, and superior performance demonstrates EfficientnetB3’s better capacity for an accurate lung cancer detection system. Nonetheless, the accuracy ratings of 85% obtained by Simple CNN also demonstrated useful categorization. CNN models had significantly lower accuracy scores than the EfficientnetB3 model, but these determinations indicate how acceptable the classifiers are for lung cancer detection. The novelty of our research is that less work is done on histopathological images. However, the accuracy of the previous work is not very high. In this research, our model outperformed the previous result. The results are advantageous for developing systems that effectively detect lung cancer and provide crucial information about the classifier’s efficiency.
۳.

Improving the Cross-Domain Classification of Short Text Using the Deep Transfer Learning Framework(مقاله علمی وزارت علوم)

کلیدواژه‌ها: Sentiment Analysis Cross-Domain Sentiment Classification Transfer Learning deep learning deep neural networks

حوزه های تخصصی:
تعداد بازدید : ۳۵ تعداد دانلود : ۱۷
With the advent of user-generated text information on the Internet, text sentiment analysis plays an essential role in online business transactions. The expression of feelings and opinions depends on the domains, which have different distributions. In addition, each of these domains or so-called product groups has its vocabulary and peculiarities that make analysis difficult. Therefore, different methods and approaches have been developed in this area. However, most of the analysis involved a single-domain and few studies on cross-domain mood classification using deep neural networks have been performed. The aim of this study was therefore to examine the accuracy and transferability of deep learning frameworks for the cross-domain sentiment analysis of customer ratings for different product groups as well as the cross-domain sentiment classification in five categories “very positive”, “positive”, “neutral”, “negative” and “very negative”. Labels were extracted and weighted using the Long Short-Term Memory (LSTM) Recurrent Neural Network. In this study, the RNN LSTM network was used to implement a deep transfer learning framework because of its significant results in sentiment analysis. In addition, two different methods of text representation, BOW and CBOW were used. Based on the results, using deep learning models and transferring weights from the source domain to the target domain can be effective in cross-domain sentiment analysis.