مطالب مرتبط با کلیدواژه

ESTARFM


۱.

ارزیابی عملکرد مکانی و زمانی الگوریتم ریزمقیاس سازی ESTARFM در تولید تصاویر لندست-مانند از تصاویر مادیس(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ریزمقیاس سازی ESTARFM تصویر لندست-مانند شبیه سازی بازتابندگی تصاویر مادیس

حوزه‌های تخصصی:
تعداد بازدید : ۴۷۷ تعداد دانلود : ۴۸۶
سری های زمانی داده های سنجش از دوری نقش مهمی در مدلسازی و پایش تغییرات عوارض و پدیده های سطح زمین در گذر زمان دارند. با این وجود، در حالی که سری زمانی تصاویر سنجنده های با قدرت تفکیک مکانی پایین (بیش از ۱۰۰ متر از قبیل مادیس) در دسترس می باشند امکان تهیه سری زمانی منظم از داده های ماهواره های اپتیک با قدرت تفکیک مکانی مناسب (بهتر از 30 متر از جمله لندست) با توجه به پیکربندی مداری ماهواره ها و همچنین ابرناکی، بخصوص در مناطق مرطوب و مرتفع، چالشی اساسی در استفاده از این داده ها می باشد. یکی از روش های مرسوم برای برطرف ساختن این چالش، تولید تصاویر لندست-مانند با استفاده از ریزمقیاس نمایی تصاویر مادیس با استفاده از مدلهایی نظیر، مدل ESTARFM است. این تحقیق به ارزیابی کمی مدل ESTARFM به منظور ریزمقیاس نمایی تصاویر مادیس جهت تولید تصاویر لندست-مانند در مناطق غیرهمگن با استفاده از سه روش بازنمونه گیری تصویر، پوشش های زمینی مختلف و اختلاف زمانی بین تصاویر ورودی و شبیه سازی شده پرداخته است. نتایج نشان داد که استفاده از مدل با روش بازنمونه گیری خطی دوسویه با اختلاف جزیی عملکرد بهتری نسبت به سایر روش های بازنمونه گیری دارد. همچنین مدل ESTARFM قادر به تولید تصاویر لندست-مانند با RMSE بهتر از ۰.۰۲ بازتابندگی سطحی و ضریب تعیین بالاتر از ۹۰ درصد در پوشش های مختلف زمینی می باشد. علاوه بر این، با افزایش اختلاف زمانی بین تصاویر ورودی و تصویر شبیه سازی شده دقت مدل به صورت معنی داری کاهش پیدا می کند.
۲.

مقایسه الگوریتم های ریزمقیاس نمایی داده های مادیس به لندست-8 به منظور برآورد تبخیر-تعرق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ریزمقیاس نمایی لندست-8 مادیس تبخیر-تعرق کوکریجینگ SADFAT ESTARFM

حوزه‌های تخصصی:
تعداد بازدید : ۲۱۵ تعداد دانلود : ۱۵۵
در بسیاری از کاربردهای سنجش ازدور در علوم زمین، تجزیه و تحلیل با صحت بالا تنها با استفاده از تصاویری با قدرت تفکیک مکانی و زمانی بالا امکانپذیر است. سنجنده ی مادیس برخلاف قدرت تفکیک زمانی بسیار بالا، قدرت تفکیک مکانی بسیار پایینی دارد. هدف ازین مطالعه، استفاده از الگوریتم های ریزمقیاس نمایی به منظور ریزمقیاس کردن تصاویر مادیس به تصاویر لندست 8 است. سپس تصاویر ریزمقیاس شده در برآورد تبخیر-تعرق واقعی با استفاده از الگوریتم سبال در منطقه کشت و صنعت امیرکبیر مورد مقایسه قرار گرفتند. در این مطالعه از الگوریتم هایSTARFM ، ESTARFM و Regression جهت ریزمقیاس نمایی باندهای بازتابندگی و از الگوریتم های SADFAT ، Regression و Cokriging جهت ریزمقیاس نمایی باندهای حرارتی استفاده شده است. سپس، تصاویر ریزمقیاس شده بازتابندگی و حرارتی به منظور استفاده در مدل سبال، پردازش گردیدند و تبخیر-تعرق واقعی محاسبه گردید. نتایج نشان داد که در میان روش های ریزمقیاس نمایی اعمال شده بر باندهای بازتابندگی، STARFM با مجذور میانگین مربعات خطای0.0180 دارای عملکرد بهتری نسبت به سایر روشها بود. در میان روش های اعمال شده بر باندهای حرارتی، الگوریتم SADFAT با مجذور میانگین مربعات خطای 0.0224 عملکرد بهتری را نسبت به سایر روشها از خود نشان داد. همچنین تبخیر-تعرق واقعی لحظه ای برآورد شده از خروجی روش های ریزمقیاس نمایی به ترتیب ESTARFM /Regression، ESTARFM/ SADFAT، STARFM/Regression و STARFM/ SADFAT با اختلاف کم و مجذور میانگین مربعات خطای 0.218 میلیمتر در ساعت بهترین عملکرد و روش Regression/Cokriging با میانگین مربعات خطای 0.388 میلیمتر در ساعت ضعیف ترین عملکرد را داشتند.