سارا نحوی

سارا نحوی

مطالب

فیلتر های جستجو: فیلتری انتخاب نشده است.
نمایش ۱ تا ۱ مورد از کل ۱ مورد.
۱.

مقایسه الگوریتم های ریزمقیاس نمایی داده های مادیس به لندست-8 به منظور برآورد تبخیر-تعرق(مقاله علمی وزارت علوم)

کلیدواژه‌ها: ریزمقیاس نمایی لندست-8 مادیس تبخیر-تعرق کوکریجینگ SADFAT ESTARFM

حوزه های تخصصی:
تعداد بازدید : ۲۰۶ تعداد دانلود : ۱۴۰
در بسیاری از کاربردهای سنجش ازدور در علوم زمین، تجزیه و تحلیل با صحت بالا تنها با استفاده از تصاویری با قدرت تفکیک مکانی و زمانی بالا امکانپذیر است. سنجنده ی مادیس برخلاف قدرت تفکیک زمانی بسیار بالا، قدرت تفکیک مکانی بسیار پایینی دارد. هدف ازین مطالعه، استفاده از الگوریتم های ریزمقیاس نمایی به منظور ریزمقیاس کردن تصاویر مادیس به تصاویر لندست 8 است. سپس تصاویر ریزمقیاس شده در برآورد تبخیر-تعرق واقعی با استفاده از الگوریتم سبال در منطقه کشت و صنعت امیرکبیر مورد مقایسه قرار گرفتند. در این مطالعه از الگوریتم هایSTARFM ، ESTARFM و Regression جهت ریزمقیاس نمایی باندهای بازتابندگی و از الگوریتم های SADFAT ، Regression و Cokriging جهت ریزمقیاس نمایی باندهای حرارتی استفاده شده است. سپس، تصاویر ریزمقیاس شده بازتابندگی و حرارتی به منظور استفاده در مدل سبال، پردازش گردیدند و تبخیر-تعرق واقعی محاسبه گردید. نتایج نشان داد که در میان روش های ریزمقیاس نمایی اعمال شده بر باندهای بازتابندگی، STARFM با مجذور میانگین مربعات خطای0.0180 دارای عملکرد بهتری نسبت به سایر روشها بود. در میان روش های اعمال شده بر باندهای حرارتی، الگوریتم SADFAT با مجذور میانگین مربعات خطای 0.0224 عملکرد بهتری را نسبت به سایر روشها از خود نشان داد. همچنین تبخیر-تعرق واقعی لحظه ای برآورد شده از خروجی روش های ریزمقیاس نمایی به ترتیب ESTARFM /Regression، ESTARFM/ SADFAT، STARFM/Regression و STARFM/ SADFAT با اختلاف کم و مجذور میانگین مربعات خطای 0.218 میلیمتر در ساعت بهترین عملکرد و روش Regression/Cokriging با میانگین مربعات خطای 0.388 میلیمتر در ساعت ضعیف ترین عملکرد را داشتند.

کلیدواژه‌های مرتبط

پدیدآورندگان همکار

تبلیغات

پالایش نتایج جستجو

تعداد نتایج در یک صفحه:

درجه علمی

مجله

سال

حوزه تخصصی

زبان