کنترل پیشبینانه کیفیت با استفاده از شبکههای عصبی مصنوعی (ANNs) و روش ترکیبی تحلیل رگرسیون و ANNs(مقاله علمی وزارت علوم)
حوزههای تخصصی:
در این مقاله با ارایه نمونه عملی فرآیند اسپری درایینگ، متدولوژی مدلسازی فرآیندها با استفاده سلسله مراتبی از تحلیل رگرسیونی و الگوریتم شبکه عصبی مصنوعی، با هدف کنترل پیشبینانه کیفیت، برای نخستینبار تشریح و پیادهسازی شده است. استفاده ازANNs در این مقاله، به منظور معماری مدل عصبی فرآیند اسپری درایینگ با اتخاذ یک رویکرد عمومی و انتخاب الگوریتم پس انتشار خطا به کمک دادههای مستقیم است. فرض تاثیر مثبت اعمال تحلیل رگرسیونی بر ارتقا پایایی مدل عصبی، با محاسبه و تحلیل شاخصهای ارزیابی پایایی مدل که عبارتند از: ضریب تعیین ، میانگین خطای نسبی (MRE) و جذر میانگین مربعات خطا (RMSE)، برای مدل عصبی و مدل عصبی- آماری (مدل عصبی با اعمال تحلیل رگرسیونی) تایید شد. در انتها با توجه به نتایج ارزیابی پایایی، سناریوهای مختلفی برای تنظیم ورودیهای فرآیند توسط مدل عصبی- آماری فرآیند طراحی شد که با استفاده از آن میتوان کنترل پیشبینانه را جایگزین روشهای مبتنی بر سعی و خطا برای کنترل فرآیند کرد.