۳.
کلیدواژهها:
لجستیک هاروی هاروی هاروی تعدیل شده شبکه عصبی غیرخطی اتورگرسیو
هدف: هدف اصلی این مطالعه مقایسه مدل های رشد لجستیکی هاروی، هاروی، شبکه عصبی غیرخطی اتورگرسیو و طراحی و یافتن مدلی بهینه با دقت پیش بینی بهتر برای داده های شاخص کل بورس تهران است که این مدل وابستگی زیادی به مقادیر گذشته خود دارد، پرنوسان است و روند حرکتی غیرخطی دارد که تاکنون مغفول مانده است. روش: در این پژوهش با به کارگیری مدل های رشد «لجستیک هاروی» و «هاروی» و افزودن جزء غیرخطی بر اساس بسط سری تیلور توابع مثلثاتی روی داده های روزانه مربوط به سال های 1393 تا 1395، نوسان های شاخص کل بورس به چهار گروه دسته بندی شدند و ضمن مشخص شدن کارآمدی این مدل ها بر اساس معیارهای پیش بینی، نتایج آن با شبکه عصبی غیرخطی اتورگرسیو ارزیابی و مقایسه شد. یافته ها: نتیجه آزمون های ریشه واحد دیکی فولر و BDS بیان کننده این است که داده ها مانا هستند و رفتار غیرخطی دارند. در مرحله برآورد، از آنجا که مدل های لجستیک هاروی و هاروی ریشه میانگین مربعات خطای بالا و ضریب تعیین کم داشتند، خوبی برازش آنها در هر چهار نوع داده تأیید نشد. با افزودن جزء غیرخطی به مدل هاروی برازش بسیار مناسبی از شاخص کل بورس با ضریب تعیین حداقل 8/99درصد و حداقل ریشه میانگین مربعات خطا ب دست آمد که حتی در مقایسه با شبکه عصبی غیرخطی اتورگرسیو بهتر بود. نتیجه گیری: نتایج پژوهش نشان می دهد که ترکیب مدل هاروی با جزء غیرخطی، در مقایسه با دو مدل رشد لجستیکی هاروی و شبکه عصبی غیرخطی اتورگرسیو، شاخص کل بورس تهران را بهتر پیش بینی می کند.