مطالب مرتبط با کلیدواژه

کسر پوشش گیاهی


۱.

داده گواری سنجش از دور به روش جایگزینی در شبیه سازی عملکرد ذرت علوفه ای با استفاده از مدل AquaCrop(مقاله علمی وزارت علوم)

نویسنده:

کلیدواژه‌ها: روش جایگزینی سنجش از دور مدل شبیه سازی رشد گیاه کسر پوشش گیاهی AquaCrop

حوزه‌های تخصصی:
تعداد بازدید : ۱ تعداد دانلود : ۲
مقدمه: برآورد به موقع و دقیق عملکرد محصول قبل از برداشت و پیش بینی آن ازطریق مدل های رشد محصول، برای دستیابی به برنامه ریزی عملیات زراعی و حفظ و توسعه عملکرد در مقیاس منطقه ای، از اهمیت بسیاری برخوردار است. مدل سازی تغییرات پویا، در هنگام رشد محصول، کمک شایان توجهی به محققان می کند تا استراتژی های مدیریت محصول را به منظور افزایش عملکرد آن، برنامه ریزی کنند. این مدل ها حاوی پارامترهای متعددی است که باید، با توجه به ویژگی های منطقه مورد مطالعه، کالیبره شوند؛ ازطرفی، وجود نداشتن مؤلفه مکان در این مدل ها و نیز عدم قطعیت درمورد مقادیر پارامترهای آنها منجر به بروز خطا در خروجی های برآوردشده می شود. اسیمیلیت داده های سنجش از دور می تواند برای حل این مشکل و ارزیابی تغییرپذیری مکانی در اراضی، به ویژه در مقیاس منطقه ای، مفید باشد. سنجش از دور را می توان برای تخمین و برآورد مقادیر پارامترهای ورودی مدل های رشد محصول، مانند شاخص سطح برگ، سطح پوشش، بیومس، ویژگی های خاک به کار برد. مواد و روشها: برای دستیابی به عملکرد دقیق محصول می توان از مدل های رشد گیاه استفاده کرد. برای تخمین پارامترهای مدل شبیه سازی گیاه زراعی AquaCrop و تنظیم مدل در سطح منطقه، اطلاعات مورد نیاز مدل در مراحل متفاوت رشد گیاه و قبل از کشت، در مزارع ذرت علوفه ای و در مقیاس منطقه ای، اندازه گیری و نمونه برداری شد. به منظور کالیبره کردن مدل شبیه سازی AquaCrop ازطریق داده گواری سنجش از دور (RS)، متغیر بیوفیزیکی fCover از داده های RS مبتنی بر پیکسل، با توسعه الگوریتم GPR-PSO، استخراج شد. علاوه براین، با هدف ساده سازی مدل AquaCrop و شناسایی پارامترهای تأثیرگذارتر، الگوریتم های تحلیل حساسیت ترکیبی Morris و EFAST به کار رفت. درنَهایت، ازطریق داده گواری متغیر بیوفیزیکی استخراج شده با RS در مدل AquaCrop، این پارامترهای مؤثرتر با استفاده از روش جایگزینی تخمین زده شد و نتایج با نتایج حاصل از شرایط استفاده نکردن از داده های RS مقایسه شد. به منظور کالیبره کردن مدل AquaCrop، نمونه برداری مزرعه ای از خاک (قبل از کاشت) و محصول در فصل رشد ذرت علوفه ای، عکس برداری رقومی نیم کروی (DHP) و همچنین اندازه گیری به روش تخریبی LAI برای مقایسه، در مزارع شهرستان قلعه نو واقع در جنوب تهران، در تابستان ۱۳۹۸ انجام شد. نتایج و بحث: نتایج داده گواری RS در مدل AquaCrop در مقایسه با به کار نبردن داده های RS در این مدل نشان داد که در نظر گرفتن داده گواری RS منجر به افزایش دقت تنظیم کردن مدل می شود. نتایج نشان داد که داده گواری سنجش از دور در مدل به برآورد دقت متغیر خروجی عملکرد در آماره R2، به میزان ۸۹/۰ و ۸۸/۰، در واسنجی و صحت سنجی منجر شده است. داده گواری سنجش از دور، در قیاس با اعمال نشدن آن، به بهبود دقت و افزایش R2 به میزان ۱۴/۰ و ۱۵/۰ و نیز کاهش در آماره RRMSE به میزان ۱۲/۴ و ۱۷/۵%، در آماره RMSE به میزان ۵/۲ و ۴/۲ ton/ha، به ترتیب در واسنجی و صحت سنجی، انجامیده است. بنابراین، در مقایسه داده گواری RS و بدون داده گواری، بهبود فرایند تنظیم مدل با داده گواری RS همراه است. نتیجه گیری: در این تحقیق، مقادیر برآوردشده پارامتر بیوفیزیکی fCover، به دست آمده ازطریق سنجش از دور به منزله متغیر کنترل مشاهداتی ورودی برای مدل AquaCrop استفاده شد تا پارامترهای تأثیرگذار شناسایی شده آن (ازطریق تحلیل حساسیت) تنظیم شود. نتایج نشان می دهد که داده گواری سنجش از دور، با استفاده از روش جایگزینی برای تنظیم مدل مدنظر، توانسته است بر میزان دقت برآوردشده بیفزاید. علاوه براین، توافق بین مقادیر پیش بینی شده و اندازه گیری شده بیشتر از زمانی است که سنجش از دور اعمال نمی شود. بنابراین نتایج تحقیق نشان می دهد که داده گواری سنجش از دور در مدل AquaCrop می تواند عملکردی موفق تر از شرایط اعمال نشدن سنجش از دور داشته باشد و نتایج با دقت بیشتری به دست دهد. همچنین، در مقیاس منطقه ای، می توان با استفاده از سنجش از دور و قابلیت آن در برآورد پارامتر بیوفیزیکی در مقیاس وسیع، با صرف وقت و هزینه کمتر و به روزتر، مدل های رشد محصول را برای منطقه مورد نظر کالیبره کرد.